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1. Evaluation Metrics

We adopt the same evaluation metrics as in [1, 5, 8, 14]
to evaluate the estimated normal results of baseline methods
and our method. Firstly, we employ the Root Mean Squared
Error (RMSE) of normal angles between the ground-truth
normals n̂ and the predicted normals n, i.e.,

  {\rm RMSE}_{U} &= \sqrt {\frac {1}{N} \sum _{i=1}^{N} \big ( \arccos (| \hat {\mathbf {n}}_i \odot \mathbf {n}_i |) \big )^2} ~~, \\ {\rm RMSE}_{O} &= \sqrt {\frac {1}{N} \sum _{i=1}^{N} \big ( \arccos ( \hat {\mathbf {n}}_i \odot \mathbf {n}_i ) \big )^2} ~~,
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where RMSEU and RMSEO are used in unoriented and
oriented normal evaluation, respectively. N is the number
of evaluated normals in a point cloud. | · | represents the ab-
solute value of the inner product ⊙ of two normal vectors.
Therefore, the normal angle errors are bounded between
0◦ and 90◦ in unoriented normal evaluation, and between
0◦ and 180◦ in oriented normal evaluation. Moreover, we
adopt the Area Under the Curve (AUC) to show the distribu-
tion of normal errors. The AUC is plotted by the percentage
of good points (PGP) whose normal angle errors are less

*The corresponding author is Yu-Shen Liu. This work was supported
by National Key R&D Program of China (2022YFC3800600), the Na-
tional Natural Science Foundation of China (62272263, 62072268), and
in part by Tsinghua-Kuaishou Institute of Future Media Data.

Table 1. Comparison of the normal angle RMSE, the learnable net-
work parameter (million) and the average execution time (seconds
per 100k points) of different learning-based methods for oriented
normal estimation on the PCPNet dataset. Our method achieves
a large performance gain with relatively few network parameters
and execution time.

Ours PCPNet [5]
HSurf-Net [8]

+ODP [11]
AdaFit [14]
+ODP [11]

RMSE 19.79 37.66 31.07 30.93
Param. 3.27 22.36 2.16+0.43 4.87+0.43
Time 65.89 63.02 72.47+236.35 56.23+248.54

than the angle thresholds. The PGP is computed by

  {\rm PGP}_{U}(\tau ) &= \frac {1}{N} \sum _{{i}=1}^{N} \mathcal {I} \big ( \arccos (| \hat {\mathbf {n}}_i \odot \mathbf {n}_i |) < \tau \big ), \\ {\rm PGP}_{O}(\tau ) &= \frac {1}{N} \sum _{{i}=1}^{N} \mathcal {I} \big ( \arccos ( \hat {\mathbf {n}}_i \odot \mathbf {n}_i ) < \tau \big ), 
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where PGPU (τ) and PGPO(τ) are used in unoriented and
oriented normal evaluation, respectively. I represents an
indicator function that measures whether the error is less
than a threshold τ .

2. Tangent Plane of Explicit & Implicit Surface
Generally, an explicit surface z= f(x, y) can be rewrit-

ten as an implicit surface, i.e., F (x, y, z)=z − f(x, y)=0.
These two surface representations have the same tangent
plane at a given point p=(x0, y0, z0), where the point nor-
mal is defined. We briefly prove this conclusion as follows.
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(a) Unoriented normal evaluation
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(b) Oriented normal evaluation

Figure 1. Unoriented and oriented normal evaluation results on the PCPNet test set using our models trained for 100 to 1200 epochs.
We report the results under different noise levels and density variations along with their average values. Note that the normals used in
unoriented and oriented normal evaluation are the same, but evaluated using different metrics, i.e., RMSEU and RMSEO .

For the explicit surface z = f(x, y), its tangent plane is
given by

  \label {eq:explicit} f'_x(x_{0}, y_{0})(x-x_0) + f'_y(x_{0}, y_{0})(y-y_0) + z_{0} \!=\! z. 
    

      (5)

For the implicit surface F (x, y, z) = 0, its tangent plane is
given by

  \label {eq:implicit} F'_x(p)(x-x_0) + F'_y(p)(y-y_0) + F'_z(p)(z-z_0) \!=\! 0. 
  

  
  (6)

Since F (x, y, z)=z − f(x, y), we have

  F'_x(p) \!=\! -f'_x(x_0,y_0), ~F'_y(p) \!=\! -f'_y(x_0,y_0), ~F'_z(p) \!=\! 1. \nonumber 


 



 



Then, the Eq. (6) can be rewritten as

  -f'_x(x_0,y_0)(x-x_0) - f'_y(x_0,y_0)(y-y_0) + (z-z_0) \!=\! 0. \nonumber 
   

      

Finally, we obtain

  f'_x(x_0,y_0)(x-x_0) + f'_y(x_0,y_0)(y-y_0) + z_0 \!=\! z. \nonumber 
    

    

This equation is the same as the Eq. (5). Therefore, we
prove that the explicit and implicit surface representations
have the same tangent plane at a given point.

3. Evaluation of the Trained Models
We evaluate our method on the PCPNet test set using

models trained for 100 to 1000 epochs. The estimated nor-
mals are measured using the evaluation metrics RMSEU

and RMSEO of normal angles, and the evaluation results
are shown in Fig. 1. We provide the results at different noise

levels and different density variations along with their aver-
age results. It can be seen from the curves in Fig. 1 that
the errors of unoriented normal evaluation keep decreas-
ing, while the errors of oriented normal evaluation fluctu-
ate greatly. In our training, we observe that the model is
harder to converge in oriented normal estimation than in
unoriented normal estimation. After about 800 epochs of
training, the errors of oriented normal evaluation reach a
minimum value, and the errors of unoriented normal eval-
uation also reach the lowest value and remain unchanged.
Therefore, in all experiments of the paper, we use the model
trained in 800 epochs.

4. Complexity & Efficiency
In the oriented normal evaluation experiments, we com-

pare our method to PCPNet [5], DPGO [13], and other
methods that are based on a two-stage paradigm. The
trained model of PCPNet [5] is available. The source code
of DPGO [13] is uncompleted and its results on the PCP-
Net dataset are taken from its paper. For other methods that
are based on a two-stage paradigm, we choose three un-
oriented normal estimation methods (PCA [6], AdaFit [14]
and HSurf-Net [8]) and three normal orientation methods
(MST [6], QPBO [12] and ODP [11]). We make different
combinations of them to estimate oriented normals, such as
AdaFit+ODP and HSurf-Net+ODP. Among these baselines,
AdaFit [14], HSurf-Net [8] and ODP [11] are learning-
based methods, and the others are traditional methods.

In this evaluation experiment, we compare the learning-
based methods on the same machine with NVIDIA 2080
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Figure 2. Comparison with surface reconstruction methods, e.g.,
Points2Surf [3], Neural-Pull [9] and ContextPrior [10]. The cham-
fer distances (×104) are provided for the reconstructed surfaces.

Ti GPU. In Table 1, we report the normal angle RMSE,
the number of the learnable network parameters, and the
execution time of each method for oriented normal esti-
mation. Our method achieves a large performance im-
provement with relatively fewer parameters and less run-
ning time.

5. Comparison with Surface Reconstruction
Methods

For the normal estimation task, we do not simply use
the skills of surface reconstruction methods. First, com-
pared with the dual-stream structure of Points2Surf [3], we
present novel task-specific patch/shape encoders and fea-
ture fusion strategy. Compared with POCO [2], we extend
the attention mechanism with coplanarity weight τ and sign
prediction to learn oriented normals from signed hyper sur-
faces. Second, we present a detailed mathematical deriva-
tion for the design of our algorithm. We make a compre-
hensive analysis of the problem in theory and make specific
designs in technology. It is these new and important innova-
tive designs that make our method outperforms the state-of-
the-art methods in both unoriented and oriented normal es-
timation on the widely used benchmarks. Furthermore, we
explore a new idea for learning local features and geometric
properties from point clouds. It can better serve the commu-
nity for point cloud processing and has a positive impact on
the performance improvement of downstream tasks using
normals.

As shown in Fig. 2, based on the accurate normals esti-
mated by our method, Poisson reconstruction algorithm [7]
reconstructs more complete detailed geometry from point
clouds than baseline methods [3, 9, 10].

6. Comparison with HSurf-Net

In our work, we have made great innovations compared
with HSurf-Net [8]. First, we design a brand new algorithm
framework, including patch/shape encoder and attention-

PCA+QPBOPCA+ODPPoint Cloud PCA+MST

AdaFit+ODP AdaFit+QPBOPCPNet AdaFit+MST

HSurf-Net+MST HSurf-Net+ODP HSurf-Net+QPBOOurs

Figure 3. Comparison of surface reconstruction results using nor-
mals from different methods.

weighted normal prediction, and it achieves significant per-
formance improvements in both oriented and unoriented
normal estimation tasks. Second, estimating oriented nor-
mal is more difficult than unoriented normal, and it needs
global information. In order to solve this challenging task,
we use the theory of learning implicit surface to further ex-
pand the Hyper Surface, such that it is signed to be able to
determine the orientation of normal. This is our advantage
over HSurf-Net which can only be used to estimate unori-
ented normal. Our experimental results (Table 1, 2 and Fig.
5, 6 in the paper) show the effectiveness of novel designs in
our method.

7. Visualization of Weight and Attention

In Fig. 4, we visualize the learned attention weight in
the normal prediction module H, weight τ in Eq.(12) and
weight w in Eq.(14) of the paper. They illustrate the points
that the model focuses on at different stages of the normal
estimation process. The weight w indicates that the model
focuses on points closer to the center during the patch and
shape encoding. The weight τ indicates that the model fo-
cuses on points coplanar with the query point during the
final local feature modulation for normal prediction. The
attention weight indicates that the model focuses on the
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Figure 4. Visualization of the learned attention weight, weights w and τ in point cloud patches (a)-(e). They show the points that the model
focuses on at different stages of the normal estimation process. Specifically, the points are the following three types: (top) the points closer
to the center, (middle) the query point and its neighbors, and (bottom) the points coplanar with the query point. The red color indicates
that the point has a large value, while the blue color indicates that it has a small value. The black point is the query point of the patch. The
viewing angle of the third row is changed for better visualization.

query point during the final oriented normal prediction of
the query point.

8. Limitation and Failure Case

We find that the task of estimating oriented normals with
consistent orientations is more challenging than finding the
perpendicular line of a local plane/surface. In our experi-
ments, we observe that our method can deliver good unori-
ented normal results from various point clouds. In contrast,
our method has the potential to fail on normal orientation in
oriented normal evaluation. As we introduced in the paper,
our method determines the normal orientation depending on
the global latent code that is extracted from the global sub-
sample set of the shape point cloud. Thus, the quality of the
global subsample set will greatly affect the final normal ori-
entation result. For our network model, the global subsam-
ple sets from different sampling strategies lead to significant
performance differences, as we demonstrate in the ablation
studies. At present, the sampling strategy we use is not op-
timal. Ideally, the errors in the unoriented and oriented nor-
mal evaluation should be the same, i.e. the normals are all
oriented correctly. In practice, however, if the global sub-
sample set cannot provide clear information to distinguish
the spatial relationship between the inside and the outside,
then the result of normal orientation may be in the opposite
direction. This will lead to poor evaluation results for ori-
ented normals even though their corresponding unoriented

normals are very accurate. In summary, the bottleneck of
oriented normal estimation is to estimate the correct normal
orientation.

In Fig. 5, we show some failure cases of our method in
oriented normal estimation. In these cases, the unoriented
normal results are accurate, and the normal orientations of
most points are also correct. We can see that the failure
only occurs in the regions with special structures, such as
small holes, complex concave structures, and the inner wall
of the bending pipe with uneven density. In these areas, the
information provided by globally sampled point clouds is
insufficient or ambiguous. Moreover, we find that our ori-
ented normal results are unsatisfactory on objects in indoor
scenes, such as vertical walls inside the closed room, where
our method cannot estimate normals with consistent orien-
tations since they do not form internal and external struc-
tures. Future work includes exploring the transfer of context
information between patches, such as using the orientation
of adjacent patches to form a mechanism similar to LSTM
or attention in NLP, and treating patches in point clouds as
words in sentences. It is also important work to develop
noise-adaptive techniques [4] to handle more diverse point
clouds.

9. More Discussion

Loss for neighboring points. The loss for neighboring
point normals makes the attention-weighted module shift

4
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Figure 5. Visualization of failure cases on datasets PCPNet (top) and FamousShape (bottom). Our method can estimate the unoriented
normals with high accuracy. However, the normal orientations in some local areas are not correctly determined. We map the normal vector
and normal angle error to RGB colors for visualization.

some attention from the query point to the neighborhood
points, which is beneficial for the patch/shape encoder to
extract more useful neighborhood features. Thus, it helps
the network learn to fit the Signed Hyper Surface in the fea-
ture space, thereby accurately describing the spatial geom-
etry around the query point.
The network predicts the normal and its sign. Compared
with directly predicting an oriented 3D normal vector by
MLP, decomposing it into unoriented normal and its sign
can reduce the search space of the model (from the whole
spherical space to the hemisphere), and improve the accu-
racy of estimation results. Please see part (c) of ablation
studies in the paper.

10. More Results

In Fig. 3, We show a visual comparison of surfaces re-
constructed by the Poisson algorithm [7] based on the esti-
mated normals. In Fig. 6, we show a visual comparison of
the oriented normal angle RMSE of different methods. The
point clouds are rendered in RGB colors generated from the

error values.
In Fig. 7, we show the oriented normal AUC of the

evaluated methods on different data categories of the Fa-
mousShape dataset. It can be seen that our method achieves
significant performance improvements at all thresholds. In
Fig. 8 and Fig. 9, we show the unoriented normal AUC of
various methods on the datasets PCPNet and FamousShape,
respectively. We can see that our method maintains a per-
formance advantage at the vast majority of thresholds.

In Fig. 10 and Fig. 11, we provide more visual com-
parison results of the reconstructed surfaces on the KITTI
dataset. The surfaces are generated by Poisson surface re-
construction algorithm [7] based on the oriented normals es-
timated by different methods. It can be seen that the recon-
struction algorithm can benefit from the oriented normals
estimated by our method to generate better scene surfaces.

In Fig. 12, we show the oriented normals estimated by
our method on different shapes of the PCPNet dataset [5].
We map the normal vectors to RGB colors to render the
point cloud. In Fig. 13, we visualize the angle RMSE of
the oriented normals estimated by our method on different

5



PCA+MST PCA+QPBOPCA+ODPPoint Cloud

AdaFit+MST AdaFit+ODP AdaFit+QPBOPCPNet

HSurf-Net+MST HSurf-Net+ODP HSurf-Net+QPBO
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Figure 6. Visualization of the oriented normal error on datasets PCPNet (left) and FamousShape (right). The angle error is mapped to a
heatmap ranging from 0◦ to 180◦. The purple color indicates the same direction as the ground-truth, while the red color is the opposite.

shapes of the PCPNet dataset. We map the errors to RGB
colors to render the point cloud.

Our FamousShape dataset is generated from mesh data
following the same preprocessing steps as the PCPNet
dataset. It contains 12 shapes with different structures. As
shown in Fig. 14, we visualize the angle RMSE of the ori-
ented normals estimated by our method on all shapes of the
FamousShape dataset.
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Figure 7. Oriented normal AUC on the FamousShape dataset. Our method achieves significant performance improvements at all thresholds.
The X-axis is the angle threshold and the Y-axis is the percentage of good point normals (PGP) whose errors are less than the given
threshold.
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Figure 8. Unoriented normal AUC on the PCPNet dataset. Our method maintains a performance advantage at the vast majority of
thresholds. The X-axis is the angle threshold and the Y-axis is the percentage of good point normals (PGP) whose errors are less than the
given threshold.
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Figure 9. Unoriented normal AUC on the FamousShape dataset. Our method maintains a performance advantage at the vast majority of
thresholds. The X-axis is the angle threshold and the Y-axis is the percentage of good point normals (PGP) whose errors are less than the
given threshold.
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Figure 10. The reconstructed surfaces using oriented normals estimated by different methods on the KITTI dataset.
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Figure 11. The reconstructed surfaces using oriented normals estimated by different methods on the KITTI dataset.
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Figure 12. The normal estimation results of our method on the PCPNet dataset. The 3D point cloud normals are mapped to RGB colors
for visualization.
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Figure 13. Error visualization of oriented normals estimated by our method on the PCPNet dataset. We map the normal errors to a heatmap
ranging from 0◦ to 180◦ for visualization. The average RMSE values are reported under each point cloud.
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Figure 14. (Same as the previous figure.) Error visualization of oriented normals estimated by our method on the FamousShape dataset.
We map the normal errors to a heatmap ranging from 0◦ to 180◦ for visualization. The average RMSE values are reported for each point
cloud.
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