
A. Implementation Details
A.1. Pre-training
Encoders. Table 9 shows the architecture we use. The de-
sign follows CLIP [52]. Our image encoder involves ViT-B,
-L, -H [20], using the same patch size as in [20] (16 for
B and L, 14 for H). We use global average pooling after
the image encoder. The corresponding text encoder is of a
smaller size, following [52]. We train ViT-B/-L with 256
TPU-v3 cores, and ViT-H with 512 cores. Table 9 also
shows the model size of the image encoder, text encoder,
and the entire model (including output projection layers).

Hyper-parameters. Our default pre-training configuration
is shown in Table 10. We use the linear learning rate scaling
rule [24]: lr = base lr⇥batchsize / 256. We observe that us-
ing this rule allows us to change the batch size in ablations
without extra learning rate search. The numerical precision
we use is float32 by default. We also experimented with
bfloat16, but only observed a ⇠1.1⇥ speedup, which is con-
sistent with the results reported in Google’s blog 4.

Unmasked tuning, which is a form of pre-training while
disabling masking, follows Table 10, except that we lower
the base learning rate to 4e-8 and shorten the warmup
schedule to 25.6M samples.

A.2. ImageNet Classification
Zero-shot. We follow the prompt engineering in [52].
Their code provides 80 templates.5 We use a subset of 7
templates they recommend; using all 80 templates gives
similar results but is slower at inference.

Linear probing and fine-tuning. The setting follows [29].
See Table 11 and Table 12.

A.3. Zero-shot Retrieval
We evaluate the performance of zero-shot retrieval on

two standard benchmarks: Flickr30K [73] and COCO [42],
respectively with 1K and 5K image-text pairs in their test
sets. Following the protocol in CLIP [52], we extract the
image and text embeddings from the corresponding en-
coders and perform retrieval based on the cosine similarities
over candidate image-text pairs; no prompt is used.

A.4. Zero-shot Robustness Evaluation
In our zero-shot robustness evaluation on the ImageNet-

related sets, we use the 7 prompts provided by [52], only
except in IN-R we use all 80 prompts that are better than the
7 prompts by noticeable margins. The dataset preparation
and split follow OpenCLIP [36].6 In ObjectNet, we follow

4
https://cloud.google.com/blog/products/ai-machine-

learning/bfloat16- the- secret- to- high- performance- on-

cloud-tpus

5
https://github.com/openai/CLIP/blob/main/notebooks/

Prompt_Engineering_for_ImageNet.ipynb

Embed Vision Transformer Text Transformer # params (M)
Model dim layers width heads layers width heads vision text total
B/16 512 12 768 12 12 512 8 86 53 141
L/16 768 24 1024 16 12 768 12 303 109 414
H/14 1024 32 1280 16 24 1024 16 631 334 967

Table 9. Encoder specifics.

config value
optimizer AdamW [45]
base learning rate 4e-6
weight decay 0.2
optimizer momentum �1, �2=0.9, 0.95 [10]
learning rate schedule cosine decay [44]
warmup (in samples) 51.2M (B/L), 256M (H)
numerical precision float32

Table 10. Pre-training setting.

config value
optimizer LARS [72]
base learning rate 0.01
weight decay 0
optimizer momentum 0.9
batch size 16384
learning rate schedule cosine decay
warmup epochs 10
training epochs 90
augmentation RandomResizedCrop

Table 11. Linear probing setting.

config value
optimizer AdamW
base learning rate 5e-5
weight decay 0.05
optimizer momentum �1, �2=0.9, 0.999
layer-wise lr decay [14] 0.75
batch size 1024
learning rate schedule cosine decay
warmup epochs 5
training epochs 50 (L/H)
augmentation RandAug (9, 0.5) [15]
label smoothing [58] 0.1
mixup [76] 0.8
cutmix [75] 1.0
drop path [34] 0.2 (L/H)

Table 12. Fine-tuning setting.

[52] to use the class names without prompts. In YTBB, we
use the VOC prompts provided by [52].

A.5. More Zero-shot Datasets
For the experiments in Table 4, we use the prompts

provided by [52].7 We follow the data preparation scripts
provided by [25] and [46] and load data using Tensorflow
Datasets. Following [52], we report the mean accuracy per
class for FGVC Aircraft, Oxford-IIIT Pets, Caltech-101,
and Oxford Flowers 102 datasets; we report the mean of
top-1 and top-5 accuracy for Kinetics-700, ROC AUC for
Hateful Memes, and 11-point mAP for Pascal VOC 2007
Classification; we report top-1 accuracy for the rest of the

6
https://github.com/LAION-AI/CLIP_benchmark

https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://github.com/openai/CLIP/blob/main/notebooks/Prompt_Engineering_for_ImageNet.ipynb
https://github.com/openai/CLIP/blob/main/notebooks/Prompt_Engineering_for_ImageNet.ipynb
https://github.com/LAION-AI/CLIP_benchmark


datasets. We note that the Birdsnap dataset on Internet is
shrinking over time and only 1850 test images are available
for us (vs. 2149 images tested in [52], and 2443 originally).

A.6. Captioning
We build a sequence-to-sequence encoder-decoder trans-

former model on top of the ViT image encoder, with 3 en-
coder layers and 3 decoder layers following [7]. Specifi-
cally, the ViT image features are first linearly projected to a
384-dimensional sequence and further encoded by a 3-layer
transformer encoder (of 384 width and 6 heads). For auto-
regressive caption generation, we discard the pre-trained
text encoder in FLIP and use a randomly initialized 3-layer
transformer decoder (of 384 width and 6 heads) with cross-
attention to encoder outputs. The model is trained to predict
the next text token using the tokenizer in [52].

For simplicity, we supervise the image captioning model
only with teacher forcing using a word-level cross-entropy
loss [7]; we do not use the CIDEr score optimization in [7].
The full model is fine-tuned end-to-end with the AdamW
optimizer, a batch size of 256, a learning rate of 1e-4 for
newly added parameters, a weight decay of 1e-2, a warmup
of 15% iterations, and a cosine decay learning rate schedule.
The learning rate for the pre-trained ViT parameters is set to
1e-5 for ViT-L (and 5e-6 for ViT-H). The input image size is
512⇥512 for ViT-L/16 and 448⇥448 for ViT-H/14 (to keep
the same sequence lengths).

All models are fine-tuned for image captioning on the
COCO training split of [38] for 20 epochs. During infer-
ence, the image captions are predicted with auto-regressive
decoding, and we report their performance on the COCO
test split of [38] under different metrics.

To evaluate how the COCO-trained models generalize
to novel objects, we evaluate these models directly on the
nocaps [1] validation set, with no further fine-tuning.

A.7. Visual Question Answering
In our VQA experiments, we follow the architecture de-

scribed in [21]. Specifically, the VQA task is casted as a
classification problem over all answer classes. The input
images are encoded by the ViT encoders. The input ques-
tions are encoded by a pre-trained RoBERTa text encoder
[43], following the practice in [21]. A multimodal fusion
Transformer (4 layers, 768-d, 12 heads, with merged atten-
tion [21]) is applied to combine the image and text repre-
sentations. A two-layer MLP is applied on the class token
of the fusion module to obtain the VQA output [21].

We fine-tune the VQA model end-to-end. The loss func-
tion is a binary sigmoid loss using soft scores [60]. We use
a batch size of 256, a learning rate of 1e-4 for randomly ini-
tialized parameters, and a learning rate of 1e-5 (ViT-L) or
5e-6 (ViT-H) for the pre-trained ViT parameters. We use a

7
https://github.com/openai/CLIP/blob/main/data/prompts.md

weight decay of 1e-2, a warmup of 15% of iterations, and a
cosine decay learning rate schedule. The input image size
is 512⇥512 for ViT-L/16 and 448⇥448 for ViT-H/14.

All models are fine-tuned for 20 epochs on the VQAv2
train+val set, with additional question-answer pairs from
Visual Genome [39], following [60]. We report results on
the test-dev split from the evaluation server.

https://github.com/openai/CLIP/blob/main/data/prompts.md

