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1. Introduction to Monte Carlo (MC) sampling via Langevin dynamics (LD)
In the section, we give a brief introduction to MC sampling via LD, a Markov chain Monte Carlo (MCMC) sampling

method, which is used in our work for sampling the network weights. More details can be found in most textbooks on MC
sampling. LD is about sampling a given distribution π(θ) ∝ exp(−L(θ)). Suppose that L(θ) ∈ C2(Rn), we consider the
following Langevin dynamics, which is governed by the continuous-time stochastic differential equation (SDE)

dθt = −∇L(θt)dt+
√
2dWt, (1)

where Wt is a Brownian motion and the equality ∇ log π(θ) = −∇L(θ) is used. By the dynamics, θt is a random variable
for each time t, which is associated with a distribution pt(θ). Let t → ∞ and assume that pt(θ) → p∞(θ), the limiting
distribution p∞(θ) is defined as the stationary distribution of the SDE (1). The Fokker-Planck equation [2] is the tool to
investigate the evolution of the distribution pt(θ). The evolution dynamics of pt(θ) is given by

∂tpt(θ) =
∂

∂θ
[∇L(θ)pt(θ)] +

∂2

∂θ2
[pt(θ)]. (2)

Let t → ∞, then
∂

∂θ
[∇L(θ)p∞(θ)] +

∂2

∂θ2
[p∞(θ)] = 0, (3)

holds, where ∂tpt(θ) → 0 when t → ∞ is used. By solving the equation (3), we have the stationary distribution p∞(θ) ∝
exp(−L(θ)).

The discretization of the SDE (1) gives a Markov chain Monte Carlo (MCMC) sampling method:

θk+1 = θk − γk∇L(θk) +
√
2γkz, z ∼ N (0, 1). (4)

The above scheme is closely related to the stochastic version of gradient descent method where the stochastic behavior comes
from the injected random noise. Thus, the resultant sampling method is called stochastic gradient Langevin dynamics
(SGLD) sampling method. The convergence of the discretization scheme (4) to the continuous-SDE (1) requires that the
stepsize {γk} satisfies the Robbins-Monro condition [3]. When k is large enough, the iterative sequence {θk} from (4) can
be regarded as the samples from the stationary distribution p∞(θ) ∝ exp(−L(θ)).
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2. Computational cost on processing blurred images
See Table 1 for the comparison of computational efficiency when processing a color 800× 800 blurred image in a work-

station with a single NVIDIA TITAN RTX GPU. It is noted that for non-learning iterative methods, e.g. [4–6], the time cost
is calculated on CPU, as no GPU version of their codes is available online. It can be seen that the proposed self-supervised
method has comparable time cost when running on GPU, in comparison to existing iterative methods for non-uniform blind
motion deblurring running on CPU.

The only available self-supervised deep learning method for blind deblurring is Ren et al. [7], which is only applicable to
uniform deblurring. Our method is also applicable to uniform motion deblurring by degrading the SVOLA model to uniform
blurring model with P = 1 in (2). Under the same hardware, for a color 800× 800 blurred image, the blur kernel size is set
to 75 × 75, the comparison of time cost of two methods is: 844 (ours) vs 1357 ( [7]). It can be seen that ours is faster than
the existing method [7].

It is noted that there is no concept of ”pre-trained” model for an self-supervised method, as it directly trains a NN when
processing a blurred image. While such a scheme avoids the expensive time cost of training, the lack of a pre-trained model
makes it more suitable for processing a small to modest size of dataset.

Table 1. Comparison of time cost when deblurring a color 800× 800 image using nonuniform deblurring model.

Non-learning methods (on CPU) Self-supervised (on GPU)

Methods
Hirsch Xu Whyte

Ours
et al. [4] et al. [5] et al. [6]

Time (s) 1567 1128 1002 1082

3. Visual comparison on Köhler et al.’s dataset
In this section, we visualize the results from Köhler et al.’s dataset [8]. See Figure 1–2 for visual inspection. It can be

seen that our methods recover more sharp details compared with the existing non-uniform deblurring methods, ranging from
modest to severe non-uniform blurring degree. The advantage of our methods over others on visual quality is consistent with
the advantage of our method in quantitative comparison reported in Table 1 in the main manuscript.

Input Hirsch et al. [4] Xu et al. [5] Whyte et al. [9] Vasu & Rajagopalan [10] Tao et al. [11]

Kupyn et al. [12] Zamir et al. [13] Cho et al. [14] Li et al. [15] Ours GroundTruth

Figure 1. Visual comparison of the deblurred result of ”Church” from the dataset of Köhler et al. [8]. Zoom-in for better inspection.

4. Visual comparison on the non-uniform dataset of Lai et al. [1]
In this section, we showed the results on Lai et al.’s [1] non-uniform dataset for visual inspection. See Figure 3–5 for

the visual comparison of some results. It can be seen that our recovered results are consistently better than that from the



Input Hirsch et al. [4] Xu et al. [5] Whyte et al. [9] Vasu & Rajagopalan [10] Tao et al. [11]

Kupyn et al. [12] Zamir et al. [13] Cho et al. [14] Li et al. [15] Ours GroundTruth

Figure 2. Visual comparison of the deblurred result of ”Roof” from the dataset of Köhler et al. [8]. Zoom-in for better inspection.

compared methods in terms of visual quality, which is consistent with the quantitative evaluation shown in Table 2 in the
main manuscript.

For the real-world dataset, we use the proposed method to solve the deblurring problem with the assumption of spatially-
variant blurring. See 6-10 for the results on the images from the real-world dataset Lai et al. [1] without truth images
available. It can be seen that our method consistently recovers more details with fewer artifacts compared with the existing
methods, showing that our method is very competitive when being used for processing non-uniform-blurred images.

Input Xu et al. [5] Whyte et al. [9] Vasu & Rajagopalan [10] Tao et al. [11] Liu et al. [16]

Kupyn et al. [12] Zamir et al. [13] Cho et al. [14] Li et al. [15] Ours GroundTruth

Figure 3. Visual comparison of the deblurred results of ”Manmade04” from non-uniform dataset of Lai et al. [1]. Zoom-in for better
inspection.

5. Studies on model hyper-parameters
Recall that the SVOLA model we adopted for modeling non-uniform blurring has a hyper-parameter P :

g = K ◦ f + n =

P∑
i=1

ki ⊗ (w(· − ci)⊙ Pif) + n. (5)



Input Xu et al. [5] Whyte et al. [9] Vasu & Rajagopalan [10] Tao et al. [11] Liu et al. [16]

Kupyn et al. [12] Zamir et al. [13] Cho et al. [14] Li et al. [15] Ours GroundTruth

Figure 4. Visual comparison of the deblurred results of ”Saturated01” from non-uniform dataset of Lai et al. [1]. Zoom-in for better
inspection.

Input Xu et al. [5] Whyte et al. [9] Vasu & Rajagopalan [10] Tao et al. [11] Liu et al. [16]

Kupyn et al. [12] Zamir et al. [13] Cho et al. [14] Li et al. [15] Ours GroundTruth

Figure 5. Visual comparison of the deblurred results of ”Text02” from non-uniform dataset of Lai et al. [1]. Zoom-in for better inspection.

Such a hyper-parameter determines how fragmented the non-uniform blurring is. A larger value of P leads to a more
accurate model of non-uniform blurring, but makes the problem harder to solve. In practice, there is a trade-off between
model accuracy and computational feasibility. See Figure 11 for an illustration of how the visual quality of a non-uniform
blurred image will be impacted by the choice of different values of P . It can be seen that larger P leads to a more accurate
model and more sharp recovery in most regions, but will fail in certain regions. A smaller P leads to a more consistent
recovery without very bad results in any region, but overall the result appears to remain a little blurry.

6. Experiments of uniform motion deblurring on Levin’s dataset
The performance of our method with simplification is evaluated on the synthesized uniform blurring dataset in [1] in the

paper. We include the quantitative comparison of the performance on Levin et al. [18] in the supplementary file, see Table 2.
It shows that the supervised learning methods perform poorly for the unseen blur effects. And our proposed self-supervised
method is the best performer for the uniform motion deblurring task, our method outperforms the existing work [7]. For
visual inspection, see Figure 12-13 for visual inspection of the proposed method and other compared methods on the images
from the uniform dataset Lai et al. [1]. It can be seen that our method consistently recovers more details with fewer artifacts
compared with the existing methods, showing that our method is very competitive when being used for processing uniform-



Input Xu et al. [5] Whyte et al. [9] Tao et al. [11] Kupyn et al. [12]

Zhang et al. [17] Zamir et al. [13] Cho et al. [14] Li et al. [15] Ours

Figure 6. Visual comparison of the deblurred result of ”Text12” from Lai’s [1]. Zoom-in for better inspection.

Input Xu et al. [5] Whyte et al. [9] Tao et al. [11] Kupyn et al. [12]

Zhang et al. [17] Zamir et al. [13] Cho et al. [14] Li et al. [15] Ours

Figure 7. Visual comparison of the deblurred result of ”Notredame” from Lai’s [1] . Zoom-in for better inspection.

Table 2. Average PSNR/SSIM of the results from different methods on the dataset Levin et al. [18].

Non-learning methods Supervised learning methods Self-supervised

Metric
Xu & Jia Yan et al. Yang & Ji Chakrabarti Pan et al. Zuo et al. Tao et al. Kupyn et al. Li et al. Ren et al.

Ours
2010’ [19] 2017’ [20] 2019’ [21] 2016’ [22] 2017’ [23] 2016’ [24] 2018’ [11] 2019’ [12] 2022’ [15] 2020’ [7]

PSNR 31.64 31.28 32.04 25.21 30.42 32.66 26.12 25.70 25.28 33.31 34.34
SSIM 0.910 0.912 0.912 0.785 0.907 0.933 0.797 0.790 0.780 0.943 0.939

blurred images.

7. Demonstration on processing the images of dynamic scenes from GOPRO dataset
Recall that the proposed approach is designed to recover blurred images of static scenes with non-uniform blurring with

static scenes. The ”blending” effect often seen in the images of dynamic scenes is not considered in our method. As a result,
the proposed method cannot process most images in GOPRO dataset [12], which are the ones of dynamic scenes.

For the purpose of illustration, we select some images from the GOPRO dataset, whose contents are dominated by static
scenes. See Figure 14 for a demonstration. It can be seen that the proposed method works well. However, when being used
for processing the images whose blurring are mainly caused by moving objects, the proposed method fails. See Figure 15



Input Xu et al. [5] Whyte et al. [9] Tao et al. [11] Kupyn et al. [12]

Zhang et al. [17] Zamir et al. [13] Cho et al. [14] Li et al. [15] Ours

Figure 8. Visual comparison of the deblurred result of ”Harubang” from Lai’s [1]. Zoom-in for better inspection.

Input Xu et al. [5] Whyte et al. [9] Tao et al. [11] Kupyn et al. [12]

Zhang et al. [17] Zamir et al. [13] Cho et al. [14] Li et al. [15] Ours

Figure 9. Visual comparison of the deblurred result of ”Text3” from Lai’s [1]. Zoom-in for better inspection.

for an illustration. It would be our future work to extend the proposed method to process the images of dynamic scenes, i.e.,
how to deal with the ”blending” effect caused by moving objects.



Input Xu et al. [5] Whyte et al. [9] Tao et al. [11] Kupyn et al. [12]

Zhang et al. [17] Zamir et al. [13] Cho et al. [14] Li et al. [15] Ours

Figure 10. Visual comparison of the deblurred result of ”Wall” from Lai’s [1]. Zoom-in for better inspection.

P = 3× 4 P = 5× 8 P = 11× 16 P = 3× 4 P = 5× 8 P = 11× 16

Figure 11. Visual comparison of the recovered results w.r.t the different choices of number of patch P . Noted that the kernel for different
P has the same support. Zoom-in for better inspection.



Input Xu et al. [5] Yan et al. [20] Tao et al. [11] Kupyn et al. [12]

Kaufman et al. [25] Li et al. [15] Ren et al. [7] Ours GroundTruth

Figure 12. Visual comparison of the deblurred results of category ”natural” from uniform dataset of Lai et al. [1]. Zoom-in for better
inspection.

Input Xu et al. [5] Yan et al. [20] Tao et al. [11] Kupyn et al. [12]

Kaufman et al. [25] Li et al. [15] Ren et al. [7] Ours GroundTruth

Figure 13. Visual comparison of the deblurred results of ”natural” from uniform dataset of Lai et al. [1]. Zoom-in for better inspection.



Input Tao et al. [11] Kupyn et al. [12] Zhang et al. [17] Li et al. [15] Ours

Figure 14. Visual comparison of some deblurred results of blurring images dominated by static scene in Gopro dataset [12]. Zoom-in for
better inspection.

Figure 15. Illustration of our methods can not be adapted to dynamic scene deblurring. The dynamic deblurring contains moving objects,
which needs explicitly/implicitly segmentation. Our methods can faithfully recover the static regions, but it can not account for the
boundary issue between moving objects and the background.
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