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(a) Architecture of BSN [11] (shift=1) / BNN (shift=k)

(b) BSN [11] (c) BNN

Figure A. Illustration of our BNN. (a) BNN is implemented by

adjusting the shift size of the BSN [11]. (b) BSN shifts one pixel

to create 1×1 blind-spot. (c) Our BNN shifts k pixels to create

(2k − 1)× (2k − 1) blind-neighborhood.

A. Content
The content of this supplementary material involves:

• Detailed architectures of BNN and LAN in Sec. B.

• Analysis of model efficiency in Sec. C.

• More analysis of soft coefficients in Sec. D

Figure B. Network architecture of LAN. We stack k 3×3 convo-

lution layers to create (2k + 1) × (2k + 1) receptive field, then

refine the features by several 1×1 convolution blocks with channel

attention mechanism [23].

• Effect of different training strategies in Sec. E.

• Result comparison using different training datasets in

Sec. F.

• Comparison between BNN and pixel-shuffle down-

sampling in Sec. G.

• Additional qualitative results in Sec. H.

B. Detailed Architectures of BNN and LAN
We show the detailed architectures of the blind-

neighborhood network (BNN) in Fig. A and the locally

aware network (LAN) in Fig. B.

Blind-neighborhood Network (BNN). Our BNN is modi-

fied from the BSN used in HQ-SSL [11]. As shown in Fig-

ure A(a), BNN shares the same architecture with BSN [11].

It applies four network branches whose receptive field is re-

stricted in different directions. The output feature of each

network branch is further shifted to create the blind-spot or

blind-neighborhood. Figure A(b) shows the receptive field

of one network branch and the corresponding shift opera-

tion for BSN [11]. The network branch extracts feature fn
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Table A. Model efficiency analyses of unpaired and self-

supervised methods. #FLOPs and time is measured on denoising

a 256×256 image patch.

Method
#Param #FLOPs Time

(M) (G) (ms)

Unpaired

GCBD [3] 0.56 73.1 6.1

UIDNet [8] 0.56 73.1 6.1

C2N [9] 217.26 2978.5 154.0

Wu et al. [17] 24.93 137.2 17.9

Self-

Supervised

Noise2Void [10] 7.18 73.7 6.9

Noise2Self [2] 0.56 73.1 6.1

NAC [18] 0.78 51.2 9.7

R2R [14] 0.56 73.1 6.1

CVF-SID [13] 1.19 155.7 14.8

AP-BSN+R3 [12] 3.66 3788.1 418.6

Ours 1.08 35.0 4.8

with one direction receptive field from input Z, while the

center pixel is in the receptive field. To exclude the center

pixel from the receptive field, the shift operation is applied

on fn to generate f :

f(i, j) = fn(i, j − 1) (1)

where (i, j) is the spatial position for each pixel. The shifted

features of four network branches are fused to a whole re-

ceptive field with blind-spot. From Figure A(c), our BNN

should exclude not only the center pixel but also its neigh-

boring pixels from the receptive field, so we enlarge the shift

size from 1 to k:

f(i, j) = fn(i, j − k) (2)

The fusion of four network branches of BNN results in

a whole receptive field with (2k − 1) × (2k − 1) blind-

neighborhood.

Locally Aware Network (LAN). LAN learns the supervi-

sion for textured areas. We stack 3×3 convolution layers

to create the local receptive field, specifically, k 3×3 layers

can make up (2k + 1) × (2k + 1) receptive field. In or-

der to further refine the color information, we additionally

add several 1×1 convolution blocks with channel attention

mechanism [23].

C. Analysis of Model Efficiency
We focus on developing a novel self-supervised denois-

ing framework, rather than a denoising network architec-

ture. Thus, we use a common and efficient network archi-

tecture, i.e., U-Net [16] as our denoising network. Most

methods also use representative denoising networks, such

as DnCNN [22] and U-Net [16]. But the performance of

some methods highly depends on the denoising network

x̃1 σ α GT αGT |α−αGT |

Figure C. Visual analysis of standard deviation map σ and soft

coefficient α. αGT is computed from clean images.

Table B. PSNR of different thresholds in Eqn. (3).

Lower / Upper bound 0.5 / 5 2 / 5 1 / 3 1 / 7 1 / 5

PSNR 37.32 37.26 37.18 37.33 37.39

Table C. Result comparison on SIDD validation dataset [1] of dif-

ferent training strategies.

Training Strategy PSNR / SSIM Training Time

Joint Training 37.12 / 0.928 120h

Multi-Stage Training 37.39 / 0.934 54h

capacity or complicated post-processing. Table A shows

the model efficiency of several unpaired and self-supervised

methods. We achieve lowest #FLOPs and inference time

among the competing methods. Among these, the perfor-

mance of C2N [9] is achieved with DIDN [19], which costs

154ms to denoise a 256×256 patch. AP-BSN [12] has

the the closest performance to ours, but costs 418.6ms due

to the time-consuming random-replacing refinement (R3)

strategy. The #FLOPs and inference time of our method

are only ∼ 1% that of AP-BSN [12]. In short, our method

is not only effective but also efficient.

D. More Analysis of Soft Coefficients
To evaluate the accuracy of α, we make a comparison

between α (computed from BNN outputs) and αGT (com-

puted from clean images). Like αGT , α can well detect

the texture regions and edges (see Fig. C). When replac-

ing α with αGT for the network training, we obtain similar

denoising performance. From Fig. C, σ is a reliable indica-

tor that it’s usually higher than 5 in the textured areas (e.g.,

edges, texts) and lower than 1 in flat areas. To generate

the coefficient α that indicating flatness, we convert σ to

α with piecewise sigmoid function in Eqn. (3) and set the

threshold empirically. Tab. B shows the effect of thresholds,

and the sensitivity to thresholds is acceptable.

E. Effect of Different Training Strategies
Our method consists of three networks, i.e. BNN, LAN

and U-Net, where BNN and LAN learn spatially adap-

tive supervisions for U-Net. These three networks can be



Table D. Result comparison using different training datasets. We compare the results of different models trained with the same dataset (i.e.

SIDD Medium, SIDD Benchmark, or DND Benchmark).

(a) Training on SIDD Medium.

Method
SIDD Benchmark DND Benchmark

PSNR↑ / SSIM↑ PSNR↑ / SSIM↑
CVF-SID [13] 34.43 / 0.912 36.31 / 0.923

AP-BSN+R3 [12] 35.97 / 0.925 37.98 / 0.938

Ours 37.41 / 0.934 38.34 / 0.941

(b) Training on SIDD Benchmark.

Method
SIDD Benchmark

PSNR↑ / SSIM↑
CVF-SID [13] 34.51 / 0.916

AP-BSN+R3 [12] 36.91 / 0.931

Ours 37.37 / 0.929

(c) Training on DND Benchmark.

Method
DND Benchmark

PSNR↑ / SSIM↑
CVF-SID [13] 36.49 / 0.924

AP-BSN+R3 [12] 38.09 / 0.937

Ours 38.58 / 0.936

Table E. Quantitative comparison between BNN and the PD strat-

egy on SIDD validation dataset [1]. PD5 denotes pixel-shuffle

downsampling with downsampling factor 5. ‘PSNR of Flat Ar-

eas’ is calculated on the flat areas of PD5+DBSN or BNN out-

put, which are detected from ground-truth clean images. ‘PSNR

of Final Denoising’ is calculated on the denoising results of U-

Net [16], which is adaptively supervised by our LAN output as

well as PD5+DBSN or our BNN output.

Supervision for Flat Areas PD5+DBSN [17] BNN

PSNR of Flat Areas 51.36 54.34

PSNR of Final Denoising 34.32 37.39

(a) Noisy (b) PD5+DBSN [17] (c) BNN

Figure D. Visual comparison between our BNN and PD5+DBSN

output on SIDD Validation dataset [1].

trained simultaneously or successively, which are named

joint training strategy and multi-stage training strategy, re-

spectively. The joint training strategy updates the parame-

ters of all three networks at every iteration, while the multi-

stage training strategy only updates the parameters of one

network at each stage. We compare the denoising perfor-

mance and training time of the two training strategies on

SIDD validation dataset [1]. From Table C, the multi-stage

training strategy has better quantitative results and less than

half the training time of joint training one. Thus we choose

multi-stage training as our training strategy.

F. Result Comparison Using Different Train-
ing Datasets

Self-supervised denoisers [12, 13] are suitable for situ-

ations when the training images are scarce. They can be

trained solely on the testing dataset (e.g., SIDD Benchmark

with 40 images [1], DND Benchmark with 50 images [15])

rather than a training dataset (e.g., SIDD Medium with 320

images [1]). Training on the testing images may also bene-

fit the denoising performance, where the networks are better

fitted to the noise distribution of the testing images.

In Table 1 of the main text, the results of CVF-SID [13]

and AP-BSN [12] are measured on the models trained with

corresponding testing datasets, while ours are measured on

the model only trained with SIDD Medium. For a fairer

comparison, here we report the results of different mod-

els trained with the same dataset (i.e. SIDD Medium, SIDD

Benchmark, or DND Benchmark) in Table D. It can be seen

that no matter which dataset is used for training, our model

can outperform CVF-SID [13] and AP-BSN [12] well. In

addition, on the DND Benchmark dataset, our model trained

on the testing images shows 0.24dB improvement over the

model trained on SIDD Medium dataset.

G. Comparison between BNN and Pixel-
Shuffle Downsampling

In this section, we demonstrate BNN can provide better

supervision for flat areas than the pixel-shuffle downsam-

pling (PD) strategy. Pixel-shuffle downsampling strategy

breaks the spatial correlation of noise, then a spatially inde-

pendent denoiser can be applied to denoise the sub-images.

However, as mentioned in Sec. 3.1 in the main text, PD de-

stroys the high-frequency information [5] and leads to alias-

ing artifacts.

We conduct experiments on the PD strategy. We first

apply downsampling factor 5 (PD5) to cover the noise cor-

relation range, then we utilize recent DBSN [17] to remove

the noise of sub-sampled images. As shown in Figure D,

PD5+DBSN [17] indeed removes noise, but additionally in-

troduces aliasing artifacts. BNN does not suffer from alias-

ing artifacts and achieves better quantitative results, as BNN

operates on the original resolution. From Table E, BNN



achieves better quantitative results in flat areas, thus pro-

vides better supervision for flat areas than PD5+DBSN [17].

The performance of the denoising U-Net also demonstrates

the superiority of BNN.

H. Additional Qualitative Results
The additional visual comparison on SIDD [1] and

DND [15] dataset can be seen in Fig. E and Fig. F, respec-

tively.



Noisy DnCNN [22] (Syn) CBDNet [7] Zhou et al. [24] DnCNN [22] (Real) Baseline, N2C [16] VDN [20] Restormer [21]

BM3D [4] WNNM [6] C2N [9] Noise2Void [10] Noise2Self [2] CVF-SID [13] AP-BSN+R3 [12] Ours

Noisy DnCNN [22] (Syn) CBDNet [7] Zhou et al. [24] DnCNN [22] (Real) Baseline, N2C [16] VDN [20] Restormer [21]

BM3D [4] WNNM [6] C2N [9] Noise2Void [10] Noise2Self [2] CVF-SID [13] AP-BSN+R3 [12] Ours

Noisy DnCNN [22] (Syn) CBDNet [7] Zhou et al. [24] DnCNN [22] (Real) Baseline, N2C [16] VDN [20] Restormer [21]

BM3D [4] WNNM [6] C2N [9] Noise2Void [10] Noise2Self [2] CVF-SID [13] AP-BSN+R3 [12] Ours

Noisy DnCNN [22] (Syn) CBDNet [7] Zhou et al. [24] DnCNN [22] (Real) Baseline, N2C [16] VDN [20] Restormer [21]

BM3D [4] WNNM [6] C2N [9] Noise2Void [10] Noise2Self [2] CVF-SID [13] AP-BSN+R3 [12] Ours

Figure E. Visual comparison on SIDD validation dataset [1].



Noisy CBDNet [7] Zhou et al. [24] VDN [20] Restormer [21]

C2N [9] NAC [18] CVF-SID [13] AP-BSN+R3 [12] Ours

Noisy CBDNet [7] Zhou et al. [24] VDN [20] Restormer [21]

C2N [9] NAC [18] CVF-SID [13] AP-BSN+R3 [12] Ours

Noisy CBDNet [7] Zhou et al. [24] VDN [20] Restormer [21]

C2N [9] NAC [18] CVF-SID [13] AP-BSN+R3 [12] Ours

Figure F. Visual comparison on DND benchmark testing dataset [15].
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