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Figure A. Illustration of our BNN. (a) BNN is implemented by
adjusting the shift size of the BSN [11]. (b) BSN shifts one pixel
to create 1x1 blind-spot. (c) Our BNN shifts k pixels to create
(2k — 1) x (2k — 1) blind-neighborhood.

A. Content

The content of this supplementary material involves:
¢ Detailed architectures of BNN and LAN in Sec. B.
¢ Analysis of model efficiency in Sec. C.

* More analysis of soft coefficients in Sec. D
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Figure B. Network architecture of LAN. We stack k£ 3x3 convo-
lution layers to create (2k + 1) x (2k + 1) receptive field, then
refine the features by several 1 x 1 convolution blocks with channel
attention mechanism [23].

« Effect of different training strategies in Sec. E.

* Result comparison using different training datasets in
Sec. F.

e Comparison between BNN and pixel-shuffle down-
sampling in Sec. G.

e Additional qualitative results in Sec. H.

B. Detailed Architectures of BNN and LAN

We show the detailed architectures of the blind-
neighborhood network (BNN) in Fig. A and the locally
aware network (LAN) in Fig. B.

Blind-neighborhood Network (BNN). Our BNN is modi-
fied from the BSN used in HQ-SSL [11]. As shown in Fig-
ure A(a), BNN shares the same architecture with BSN [11].
It applies four network branches whose receptive field is re-
stricted in different directions. The output feature of each
network branch is further shifted to create the blind-spot or
blind-neighborhood. Figure A(b) shows the receptive field
of one network branch and the corresponding shift opera-
tion for BSN [11]. The network branch extracts feature f™



Table A. Model efficiency analyses of unpaired and self-
supervised methods. #FLOPs and time is measured on denoising
a 256 x256 image patch.

#Param #FLOPs Time

Method M) G) (ms)

GCBD [3] 0.56 73.1 6.1

Unpaired UIDNet [8] 0.56 73.1 6.1
C2N [9] 21726 29785 154.0

Wu et al. [17] 24.93 137.2 17.9

Noise2Void [10] 7.18 73.7 6.9

Noise2Self [2] 0.56 73.1 6.1

Self. NAC [18] 0.78 51.2 9.7

Supervised R2R [14] 0.56 73.1 6.1
CVEF-SID [13] 1.19 155.7 14.8
AP-BSN+R®? [12]  3.66 3788.1 418.6

Ours 1.08 35.0 4.8
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Figure C. Visual analysis of standard deviation map o and soft
coefficient . vt is computed from clean images.

Table B. PSNR of different thresholds in Eqn. (3).

Lower / Upper bound 0.5/5 2/5 1/3 1/7 1/5
PSNR 37.32 37.26 37.18 37.33 37.39

Table C. Result comparison on SIDD validation dataset [1] of dif-
ferent training strategies.

with one direction receptive field from input Z, while the
center pixel is in the receptive field. To exclude the center
pixel from the receptive field, the shift operation is applied
on f™ to generate f:

where (4, j) is the spatial position for each pixel. The shifted
features of four network branches are fused to a whole re-
ceptive field with blind-spot. From Figure A(c), our BNN
should exclude not only the center pixel but also its neigh-
boring pixels from the receptive field, so we enlarge the shift
size from 1 to k:

The fusion of four network branches of BNN results in
a whole receptive field with (2k — 1) x (2k — 1) blind-
neighborhood.

Locally Aware Network (LAN). LAN learns the supervi-
sion for textured areas. We stack 3x3 convolution layers
to create the local receptive field, specifically, k£ 3x3 layers
can make up (2k + 1) x (2k + 1) receptive field. In or-
der to further refine the color information, we additionally
add several 1x1 convolution blocks with channel attention
mechanism [23].

C. Analysis of Model Efficiency

We focus on developing a novel self-supervised denois-
ing framework, rather than a denoising network architec-
ture. Thus, we use a common and efficient network archi-
tecture, i.e., U-Net [16] as our denoising network. Most
methods also use representative denoising networks, such
as DnCNN [22] and U-Net [16]. But the performance of
some methods highly depends on the denoising network

Training Strategy PSNR /SSIM  Training Time

37.12/0.928 120h
37.39/0.934 54h

Joint Training
Multi-Stage Training

capacity or complicated post-processing. Table A shows
the model efficiency of several unpaired and self-supervised
methods. We achieve lowest #FLOPs and inference time
among the competing methods. Among these, the perfor-
mance of C2N [9] is achieved with DIDN [19], which costs
154ms to denoise a 256x256 patch. AP-BSN [12] has
the the closest performance to ours, but costs 418.6ms due
to the time-consuming random-replacing refinement (R®)
strategy. The #FLOPs and inference time of our method
are only ~ 1% that of AP-BSN [12]. In short, our method
is not only effective but also efficient.

D. More Analysis of Soft Coefficients

To evaluate the accuracy of o, we make a comparison
between o (computed from BNN outputs) and acr (com-
puted from clean images). Like agr, @ can well detect
the texture regions and edges (see Fig. C). When replac-
ing a with a.gr for the network training, we obtain similar
denoising performance. From Fig. C, o is a reliable indica-
tor that it’s usually higher than 5 in the textured areas (e.g.,
edges, texts) and lower than 1 in flat areas. To generate
the coefficient o that indicating flatness, we convert o to
o with piecewise sigmoid function in Eqn. (3) and set the
threshold empirically. Tab. B shows the effect of thresholds,
and the sensitivity to thresholds is acceptable.

E. Effect of Different Training Strategies

Our method consists of three networks, i.e. BNN, LAN
and U-Net, where BNN and LAN learn spatially adap-
tive supervisions for U-Net. These three networks can be



Table D. Result comparison using different training datasets. We compare the results of different models trained with the same dataset (i.e.

SIDD Medium, SIDD Benchmark, or DND Benchmark).

(a) Training on SIDD Medium.

(b) Training on SIDD Benchmark.

(c) Training on DND Benchmark.

Method SIDD Benchmark DND Benchmark Method SIDD Benchmark Method DND Benchmark
PSNR7T/SSIMT PSNRT / SSIM1 PSNRT / SSIM1 PSNRT / SSIM1
CVEF-SID [13] 34.43/0.912 36.31/0.923 CVF-SID [13] 34.51/0.916 CVEFE-SID [13] 36.49/0.924
AP-BSN+R® [12]  35.97/0.925 37.98/0.938 AP-BSN+R® [12]  36.91/0.931 AP-BSN+R® [12]  38.09/0.937
Ours 37.41/0.934 38.34/0.941 Ours 37.37/0.929 Ours 38.58/0.936

Table E. Quantitative comparison between BNN and the PD strat-
egy on SIDD validation dataset [1]. PDs denotes pixel-shuffle
downsampling with downsampling factor 5. ‘PSNR of Flat Ar-
eas’ is calculated on the flat areas of PD5s+DBSN or BNN out-
put, which are detected from ground-truth clean images. ‘PSNR
of Final Denoising’ is calculated on the denoising results of U-
Net [16], which is adaptively supervised by our LAN output as
well as PD5+DBSN or our BNN output.

PD5+DBSN [17]

51.36
34.32

BNN

54.34
37.39

Supervision for Flat Areas

PSNR of Flat Areas
PSNR of Final Denoising

(c) BNN

(a) Noisy (b) PD5+DBSN [17]

Figure D. Visual comparison between our BNN and PDs+DBSN
output on SIDD Validation dataset [1].

trained simultaneously or successively, which are named
joint training strategy and multi-stage training strategy, re-
spectively. The joint training strategy updates the parame-
ters of all three networks at every iteration, while the multi-
stage training strategy only updates the parameters of one
network at each stage. We compare the denoising perfor-
mance and training time of the two training strategies on
SIDD validation dataset [1]. From Table C, the multi-stage
training strategy has better quantitative results and less than
half the training time of joint training one. Thus we choose
multi-stage training as our training strategy.

F. Result Comparison Using Different Train-
ing Datasets

Self-supervised denoisers [12, 13] are suitable for situ-
ations when the training images are scarce. They can be
trained solely on the testing dataset (e.g., SIDD Benchmark
with 40 images [ 1], DND Benchmark with 50 images [15])
rather than a training dataset (e.g., SIDD Medium with 320
images [1]). Training on the testing images may also bene-
fit the denoising performance, where the networks are better
fitted to the noise distribution of the testing images.

In Table 1 of the main text, the results of CVF-SID [13]
and AP-BSN [12] are measured on the models trained with
corresponding testing datasets, while ours are measured on
the model only trained with SIDD Medium. For a fairer
comparison, here we report the results of different mod-
els trained with the same dataset (i.e. SIDD Medium, SIDD
Benchmark, or DND Benchmark) in Table D. It can be seen
that no matter which dataset is used for training, our model
can outperform CVF-SID [13] and AP-BSN [12] well. In
addition, on the DND Benchmark dataset, our model trained
on the testing images shows 0.24dB improvement over the
model trained on SIDD Medium dataset.

G. Comparison between BNN and Pixel-
Shuffle Downsampling

In this section, we demonstrate BNN can provide better
supervision for flat areas than the pixel-shuffle downsam-
pling (PD) strategy. Pixel-shuffle downsampling strategy
breaks the spatial correlation of noise, then a spatially inde-
pendent denoiser can be applied to denoise the sub-images.
However, as mentioned in Sec. 3.1 in the main text, PD de-
stroys the high-frequency information [5] and leads to alias-
ing artifacts.

We conduct experiments on the PD strategy. We first
apply downsampling factor 5 (PDj5) to cover the noise cor-
relation range, then we utilize recent DBSN [17] to remove
the noise of sub-sampled images. As shown in Figure D,
PD5+DBSN [17] indeed removes noise, but additionally in-
troduces aliasing artifacts. BNN does not suffer from alias-
ing artifacts and achieves better quantitative results, as BNN
operates on the original resolution. From Table E, BNN



achieves better quantitative results in flat areas, thus pro-
vides better supervision for flat areas than PD5+DBSN [17].
The performance of the denoising U-Net also demonstrates
the superiority of BNN.

H. Additional Qualitative Results

The additional visual comparison on SIDD [I] and
DND [15] dataset can be seen in Fig. E and Fig. F, respec-
tively.
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Figure E. Visual comparison on SIDD validation dataset [1].



CBDNet [7] Zhou et al. [24] Restormer [21]

C2N [9] NAC [18] CVEF-SID [13] AP-BSN+R? [12] Ours

CBDNet [7] Zhou et al. [24] VDN [20] Restormer [21]
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Figure F. Visual comparison on DND benchmark testing dataset [15].
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