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In this supplementary material, we present more analysis
and results of our proposed Spectral Enhanced Rectangle
Transformer (SERT).

• We give a detailed analysis of the rectangle self-
attention (RA) module in Section A.

• We show additional ablation study on different hyper-
parameter settings of our method in Section B.

• We provide the visualization of attention maps in Sec-
tion C to further illustrate our proposed method.

• We show more visual comparisons between our
method and the state-of-the-art methods in Section D.

A. Analysis of Rectangle Self-Attention

A.1. Self-Attention for Denoising

Hyperspectral image denoising is a classic inverse prob-
lem and has been studied for a long time. Taking a spa-
tial average of neighboring pixels is the simplest way for
denoising since most pixels have roughly the same value
as their neighbor. A typical example is the Mean filtering.
However, not all neighbors have the same value. Accord-
ingly, it is important to consider neighbors that have similar
values. Existing spatial domain methods [2] aim to remove
noise by calculating the value of each pixel based on the cor-
relation between pixels/image patches in the original image.

For our proposed rectangle self-attention, it also provide
a re-weighting mechanism for noise removal. As stated in
Eq. (6) in the main paper, attention matrix A1

i of the i-th
horizontal rectangle Z1

i is calculated through
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where Q1
i and K1

i are the projected matrix of input Z1
i .

d and P are the feature dimension and the position embed-
ding. The attention matrix A1

i ∈ Rhw×hw actually provides
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Architecture Hyperparameter Settings
embed dim 96
size of rectangles [16,1], [32,2], [32,4]
memory block 128
rank size 12
weight factor of SE 0.1

Table 1. Employed settings of hyperparameters in our SERT.

the similarity information in the i-th horizontal rectangle.
Then, V 1

i is re-weighted by A1
i as
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1
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Through self-attention, the noise pixels can obtain infor-
mation from their similar neighboring pixels. Normally, the
traditional spatial filters eliminate noise to a reasonable ex-
tent but lose sharp edges. Our proposed SERT benefits from
the power of deep learning and has a better model capacity
for texture preservation and detail maintenance.

A.2. Non-local Rectangular Self-Attention

We apply two strategies to make interactions between
non-overlapping rectangles that enable the network to ob-
tain information beyond the rectangle. First, the shift oper-
ation is employed in spatial domain. Thus, in consecutive
layers, the pixels included in a rectangle are different. Sec-
ond, the spectral enhancement (SE) module aggregates the
information from several neighboring rectangles. The ac-
quired spectral characteristic contributes to the result of RA
module by adding enhanced features to it. These two strate-
gies allow our proposed SERT to obtain non-local features
in the spatial domain for HSI denoising.

In addition to interactions between rectangles, we con-
duct the rectangle self-attention both horizontally and ver-
tically by splitting the spectral domain into two parts. The
noisy pixels can search pixels that are more similar to them-
selves from a larger number of neighbors compared to win-
dow self-attention [6], which is conducted on the whole
spectral domain. Since neighboring pixels are more likely
to belong to the same object or material, adjacent pixels are
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more likely to be similar in spectral characteristics. It im-
plies that exploring the similarity in the spatial domain on
the entire feature map is less efficient. Therefore, we con-
duct the self-attention in rectangles instead of using stripes
[4] to achieve better results with comparable complexity.

B. Additional Ablation Studies
In this section, we first provide the detailed hyperparam-

eters of our proposed SERT in Table 1. Then, we analyze
the influence of different hyperparameters and network ar-
chitectures on the denoising results. These experiments are
conducted on ICVL dataset with random Gaussian noise.
Hyperparameters of SE Module. To study the effect of
the weighting factor of SE module that contributes to the
Transformer block, we report the denoising results of dif-
ferent values of the weighting factor in Table 2(a). It im-
plies that the proposed SE module can facilitate the denois-
ing process regardless of the weight factor. SERT with a
weight factor of 0.1 achieves the best performance.

A key component of our proposed SE module is the
memory unit, which restores the global low-rank vectors.
Different settings of memory blocks and rank size have dif-
ferent impacts on the network. To study the effect, we set
the number of memory block B to 64, 128, and 256 with
different rank size K, respectively. As shown in Table 2(b),
our employed setting slightly outperforms other choices.
RA Module. The effectiveness of our proposed rectangle
self-attention module is verified in Table 2(c). Without RA
module, PSNR is decreased by 2dB. Using the SE module
alone in Transformer block without RA module is not suffi-
cient to extract spatial features.
Model Size. We compare four variants of SERT with other
deep learning methods in Table 2(d). The variants include
SERT-T (Tiny), SERT-S (Small) and SERT-B (Base). With
much less time and complexity, our SERT-T still outper-
forms other deep learning methods.

C. Visualization of Attention Maps.
We further conduct a visual analysis of the intermediate

features obtained by our method. The attention maps of
two branches in RA module are shown in Figure 1. For
the example cropped figure, we show the partitions of our
horizontal rectangle branch and vertical rectangle branch in
Figure 1(a). The example figure is of size 64×64×31. We
show its false-color image that is generated using bands 10,
16, and 29. The feature map of the example image is split
into 32 horizontal rectangles and 32 vertical rectangles. The
corresponding attention maps of each horizontal rectangle
and vertical rectangle are shown in Figures 1(b) and 1(c)
respectively. The horizontal rectangle self-attention branch
and vertical rectangle self-attention branch present different
features to model correlations between pixels.

horizontal partitionexample image vertical partition

(a) The partition of self-attention in horizontally and vertically
with image size 64 × 64 × 31.

(b) Attention maps of horizontal rectangle self-attention.

(c) Attention maps of vertical rectangle self-attention.

Figure 1. Visualization of attention maps of horizontal RA module
and vertical RA module.

D. Additional Visual comparisons

D.1. More Visual Results on Realistic Dataset

We provide the denoising results as well as it correspond-
ing spectral density curves in Figures 2 and 3 to visually
evaluate the spectral fidelity of our method on Realistic [11]
dataset. It can be observed that our method shows a very
similar spectral curve to the GroundTruth with a high corre-
lation. Traditional model-based methods including BM4D
and NGMeet lose high frequency details in the denoising
process while other deep learning methods including T3SC
and MACNet cannot suppress the real noise well. Our
method achieves the best visual effect.

D.2. More Visual Results on ICVL Dataset

We show more visual results on the ICVL dataset under
various complex noise, which are illustrated in Figures 4,
5, 6 and 7. Our method achieves the best denoising results
under various noise.

Specifically, we illustrate the visual denoising results of
all the methods under non-i.i.d Gaussian noise in Figure
4. While NGMeet and T3SC exhibit excessive smoothness,



Weight 0 0.1 0.5 0.9 1
PSNR/SSIM 42.06 42.82 42.69 42.76 42.74

(a) Effects of the weighting factor of SE module.

Memory Blocks
B

Rank Size
K

Params (M) GFLOPS PSNR

64
3 1.85 1018.8 42.73
12 1.89 1018.9 42.72
24 1.95 1018.9 42.67

128
3 1.85 1018.8 42.71
12 1.91 1018.9 42.82
24 1.97 1019.0 42.76

256
3 1.86 1018.9 42.73
12 1.93 1018.9 42.72
24 2.03 1019.0 42.66

(b) Quantitative comparison with different settings of blocks in mem-
ory unit and the rank size of SE module.

Method Params (M) GFLOPS PSNR (dB)

w/o RA 0.82 681.6 40.55
w RA (Ours) 1.91 1018.9 42.82

(c) Ablation study on the effectiveness of RA module.

Method Settings Params (M) GFLOPS Time (s) PSNR (dB)

QRNN3D [8] - 0.83 2513.7 0.683 41.34

T3SC [1] - 0.83 - 1.123 41.64

MACNet - 0.43 - 3.627 41.31

SERT-T (4, 4) 0.98 501.4 0.424 42.41

SERT-S (4, 4, 4) 1.4 746.1 0.524 42.56

SERT-B (6, 6, 6) 1.91 1018.9 0.717 42.82

(d) Quantitative comparison with four variants of SERT. Params, FLOPS, Inference
Time and PSNR are reported.

Table 2. Ablation studies on architecture and hyperparameters.

our method not only removes noise, but also effectively re-
stores the texture. Results under deadline noise are shown in
Figure 5. Figure 6 provides the results under impulse noise.
Figure 7 shows the results under mixture noise. Though
QRNN3D, T3SC, and MAC-Net obtain relatively good de-
noising results compared to traditional model-based meth-
ods under deadline noise and impulse noise, their results
under mixture noise are not promising. Our methods can
effectively handle the complex mixture noise, showing its
robustness and stronger model capacity.
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Figure 2. More Visual comparison on Realistic dataset [11] of scene 2 on band 27 with corresponding spectral density curves.
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Figure 3. More Visual comparison on Realistic dataset [11] of scene 52 on band 27 with corresponding spectral density curves.

Non-iid Noise BM4D [7] NGMeet [5] HSID-CNN [10] GRNet [3]

QRNN3D [8] T3SC [1] MAC-Net [9] SERT (Ours) GroundTruth

Figure 4. More Visual comparison on ICVL dataset on band 29 under non-iid Gausssina noise.



Deadline noise BM4D [7] NGMeet [5] HSID-CNN [10] GRNet [3]

QRNN3D [8] T3SC [1] MAC-Net [9] SERT (Ours) GroundTruth

Figure 5. More Visual comparison on ICVL dataset on band 27 under deadline noise.

Impulse Noise BM4D [7] NGMeet [5] HSID-CNN [10] GRNet [3]

QRNN3D [8] T3SC [1] MAC-Net [9] SERT (Ours) GroundTruth

Figure 6. More Visual comparison on ICVL dataset on band 31 under impulse noise.

Mixture Noise BM4D [7] NGMeet [5] HSID-CNN [10] GRNet [3]

QRNN3D [8] T3SC [1] MAC-Net [9] SERT (Ours) GroundTruth

Figure 7. More Visual comparison on ICVL dataset on band 30 under mixture noise.
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