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A. StyleGene Implementation Details
A.1. Fine-grained Face Segmentation

In this work, we follow the pipeline proposed by Dataset-
GAN [9] to obtain the fine-grained facial region annota-
tions. Since original implementation was based on the
StyleGAN [3], we first re-implement it based on the Style-
GAN2 [4]. Fig. s1 shows an example of a segmentation
mask used to train DatasetGAN, where 34 annotated re-
gions are used. To build our training set, we first use an im-
age encoder [7] to embed the real image into the W+ space
of StyleGAN2. Then we use the StyleGAN2 generator to
reconstruct the input image and adopt our DatasetGAN to
obtain the corresponding facial masks.

Figure s1. An example of facial region annotations [9].

A.2. Building a Gene Pool

In this work, we introduce the gene pool into the muta-
tion process to increase the diversity of generated descen-
dants. Fig. s2 shows a schematic diagram of our gene pool.
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We employ FairFace [2] to obtain the age, gender and race
of faces in FFHQ dataset, and then group the Region-level
Facial Genes (RFGs) with the obtained labels. The gene
pool divides age into 9 groups (0-2, 3-4, 10-19, 20-29, 30-
39, 40-49, 50-59, 60-69, and over 70 years old) and contains
7 races (White, Black, Indian, East Asian, Southeast Asian,
Middle Eastern, and Latino) and 2 genders (Male and Fe-
male). During the mutation process, we sample RFGs from
the gene pool for each facial region according to the target
age, gender and race.
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Figure s2. The schematic diagram of our proposed Gene Pool.
We group face images by age, gender, and race, and extract their
region-level facial genes to build the gene pool.

B. Sensitivity Analysis

In this section, we analyze three hyper-parameters used
in our model. The first two are η and γ in Eq.10 in the main
text to control the degree of gene mutation. The other is l in
Eq.11 in the main text to decide how many layers are used
to generate the latent code.
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B.1. Effect of η and γ

Recall that we design a gene mutation process to in-
crease the gene diversity. η and γ control the degree
of genetic variation of the descendants. Thus, when
fewer gene mutations are performed, the resulting de-
scendants will be more similar to their parents. We
expect to find the most appropriate η and γ to bal-
ance the kinship verification accuracy (ACC) and LPIPS.
In particular, we calculate the ACC and LPIPS metrics
using different η (0, 10%, 20%, 40%, 50%, 60%) and γ
(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6), respectively. We further nor-
malize the resultant values to obtain Relative ACC (RACC)
and Relative LPIPS (RLPIPS).

Inspired by Average precision (AP) [1], we propose Av-
erage Relative LPIPS (ARL) to first find the optimal η. ARL
is defined as the mean RLPIPS at a set of 11 equally spaced
RACC levels [0, 0.1, . . . , 1]:

ARL =
1

11

∑
a∈{0,0.1,...,1}

linterp (a) (1)

The RLPIPS at each RACC level a is interpolated by
taking the maximum RLPIPS measured for a method for
which the corresponding RACC exceeds a:

linterp (a) = max
ã:ã≥a

l(ã) (2)

where l(ã) is the measured RLPIPS at RACC ã.
Tab. s1 shows the corresponding ARL for different val-

ues of η. The maximal value is obtained when η = 40%.

Table s1. ARL for different values of η.

η% 0 10 20 30 40 50 60

ARL 0.39 0.45 0.45 0.45 0.47 0.37 0.39

Fig. s3 shows the RLPIPS and RACC for different γ val-
ues when η is equal to 40%. We can see that similar high
accuracy can be achieved when using small γ (< 0.47), and
the accuracy starts to drop dramatically when γ is bigger
than 0.47. In our experiments, we choose γ = 0.47 to in-
crease the gene diversity of the descendants while maintain-
ing high kinship similarity with their parents.

B.2. Effect of l

As shown in previous work [6], high-level semantics
such as face identity are controlled by lower layers (1-
8) while color scheme and microstructure are decided by
higher layers. Thus, the choice of l, which denotes the
number of layers when generating the latent code of de-
scendants, will have an effect on the diversity of gener-
ated descendants. To this end, we report the LPIPS values
between synthetic descendants by choosing different l on
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Figure s3. Sensitivity analysis of genetic variation intensity γ.

FF-Database [10]. As shown in Fig. s4, the LPIPS value
increases with larger l values, then the progress stops and
LPIPS remains similar values after more than 8 layers are
used. Therefore, we focus on controlling the first 8 layers
for Kinship face synthesis.
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Figure s4. The effect of l for mixing of parents’ styles.

C. Qualitative results
C.1. Comparison with the state-of-the-art methods

Fig. s5 shows qualitative results on TSKinFace dataset.
We compare our method with StyleDNA [5], ChildPredictor
[10], and CDFS [8]. We use different methods for each pair
of parents to produce a son and a daughter. As can be seen,
the descendants generated by our method are more realistic
than other methods.

C.2. Age and gender control

In order to control the age and gender of the descendant,
we use a gene pool constructed by grouping faces based on
age, gender and race. As described in Section A.2, the target
age and gender of descendants are used to identify the faces
with similar attributes in gene pool, which are then selected
and involved in the crossover and mutation process to gener-
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Figure s5. Comparison of children faces synthesized by our StyleGene and other methods. The two leftmost columns show the images of
father and mother. We also show the real children and the faces synthesized by ours, StyleDNA, ChildPredictor and CDFS, respectively
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Figure s6. Results of age and gender control. The leftmost column represents the parents and the rest columns show the results with
different age groups. The first and third rows are the generated sons, and the second and fourth rows are the generated daughters.

ate the RFGs of the descendants and faces with desired age
and gender. Fig. s6 shows the generated descendants with
different ages and genders. It can be seen that our method
can accurately control the age and gender of the generated
descendants and maintain a high degree of diversity.

D. Limitations
We identify two limitations of our technique. First,

our method needs to inversely project real images into the
StyleGAN latent space to extract region-level facial genes
(RFGs). Thus, this could be challenging for our method
when the GAN inversion method cannot faithfully perform
the projection. Second, we recognize that our current ap-
proach cannot perform well on face images with occlusion,

as it is difficult to extract reliable RFGs from occluded re-
gions.

E. Societal Impact

This paper focuses on kinship face synthesis using Gen-
erative Adversarial Networks. Despite utilizing exclusively
public datasets for research and adhering to their licenses,
the potential for misuse of our method, particularly for deep
fake generation, warrants concern. From the perspective of
academia, these risks may be mitigated by advancing re-
search on deep fake detection.
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