
Token Boosting for Robust Self-Supervised Visual Transformer Pre-training
(Supplementary Material)

Tianjiao Li1† Lin Geng Foo1† Ping Hu2 Xindi Shang3 Hossein Rahmani4

Zehuan Yuan3 Jun Liu1‡

1Singapore University of Technology and Design
2Boston University 3ByteDance 4Lancaster University

{tianjiao li,lingeng foo}@mymail.sutd.edu.sg, pinghu@bu.edu, shangxindi@bytedance.com

h.rahmani@lancaster.ac.uk, yuanzehuan@bytedance.com, jun liu@sutd.edu.sg

1. More Experiments
Visualization of corrupted samples and features.

Here, in order to qualitatively show the improvements from
using TBM, we visualize the image reconstruction quality
during pre-training. In Fig. 1, we plot the original corrupted
image and the reconstructed images of ViT-Huge with the
decoder, with and without the use of TBM. When TBM is
not used, reconstruction of the masked parts of the image
is challenging, and the reconstruction looks blurred and in-
accurate. This is because the corruptions in the unmasked
parts of the image make it difficult to predict the masked
parts. However, when TBM is used, there is a visible im-
provement in the quality of the reconstructed images, where
the image looks sharper and less blurred, and much of the
corruptions have been smoothened out.

Next, in Fig. 2 we visualize the effects of corruptions on
the extracted features. On the left, we see the produced fea-
tures when the input image is clean. When the same input
is perturbed with a corruption and fed to the baseline ViT-
Huge, the features undergo significant observable changes,
showing that the features are not very robust to added cor-
ruptions. However, when TBM is applied, the features show
minimal changes when fed with the same corrupted image,
and look similar to features obtained under a clean setting.
This shows that TBM helps to make the output features of
VTs more robust against input corruptions.

Investigation on the impact of the number of layers
using TBM modules. Firstly, we train a single model
to deal with an individual type of corruption in a self-
supervised manner, i.e., we train multiple models (with ViT-
Huge as the encoder) to handle the various types of cor-
ruptions, and report the average performance of the models
over all the corruption types in the top row of Fig. 3. We
find that, after adding our TBM module to a single layer,

† equal contribution
‡ corresponding author

Corrupted ViT-Huge ViT-Huge + TBM

Figure 1. Visualization of corrupted image and its reconstruction
during pre-training. Here, we visualize a corrupted input image
(left), the reconstruction from ViT-Huge (middle), and the recon-
struction with token boosting from our ViT-Huge+TBM (right).
Best viewed in color.

Features from Clean Image Features from Corrupted Image Features from Corrupted Image
After Using TBM

Figure 2. Visualization of features. We visualize the features ob-
tained when a clean image is input to ViT-Huge (left), when a cor-
rupted image is input to ViT-Huge (middle), and when the same
corrupted image is input to ViT-Huge+TBM (right). Best viewed
in color.

we obtain a significantly improved accuracy. However, in-
serting TBM modules to more layers does not lead to further
improvement, which suggests that inserting our TBM mod-
ule to a single layer is sufficient in this case. Next, we train
one model to handle all types of corruptions in ImageNet-C
at the same time. The results are plotted in the bottom row
of Fig. 3. As the number of layers using our TBM mod-
ule increases, the performance increases by a large margin

1

Number of Layers of TBM

Number of Layers of TBM

A
cc

(%
)

A
cc

(%
)

Training on a single type of corruption

Training on all types of corruption

Figure 3. Evaluation of the impact of the number of layers us-
ing TBM modules. At the top, we plot the results where a single
model is trained to deal with an individual type of corruption in
ImageNet-C. At the bottom, we plot the results where the model
is trained to handle all types of corruptions. The results of the
baseline (i.e., ViT-Huge) without using any TBM modules are in-
dicated in red stars (⋆).

and then becomes stable after 3 layers. The results suggest
that, our model, which boosts the features at multiple levels
(3 levels in our experiments) with TBM, is capable of han-
dling various types of corruptions simultaneously, which is
a complicated task.

Performance after fine-tuning our pre-trained model.
In the main paper, we evaluate on the self-supervised and
supervised settings, and here we evaluate on a third set-
ting, where we conduct fine-tuning on the entire model (i.e.,
both the ViT-Huge+TBM encoder and the linear layer).
Specifically, we fine-tune the model for 40 epochs using the
AdamW optimizer with a learning rate of 0.001. The results
are reported in Tab. 1. We observe that we outperform the
baseline on all three settings.

Table 1. Performance comparison (%) of ViT-Huge+TBM after
fine-tuning on ImageNet-C.

Methods Supervised Self-supervised Fine-tuned

ViT-Huge [3] 50.1 35.2 51.0
ViT-Huge+TBM 53.2 38.6 54.1

Comparison against alternative settings with similar
model size. Here, we compare ViT-Huge+TBM against
other settings with similar model size. In ViT-Huge+TBM
(λ = 0), we train our ViT-Huge+TBM model as usual, ex-
cept that the weight of the TBM’s reconstruction loss λ is
set to 0. This means that the TBM modules are still in-
serted into ViT-Huge, but there is no explicit boosting, and
the TBM parameters are just a part of our model (which are
involved in the end-to-end training). Alternatively, another

way to add more parameters to approximately match the
number of parameters with our ViT-Huge+TBM model is
to have slightly more layers (ViT-Huge + more layers) or
slightly wider layers (ViT-Huge + wider layers). As shown
in Tab. 2, our method outperforms other methods with a
similar model size.

Table 2. Performance comparison against alternative settings with
similar model size on ImageNet-C. ViT-Huge+TBM outperforms
other variants with the same number of parameters.

Settings Accuracy (%)

ViT-Huge + more layers 36.0
ViT-Huge + wider layers 36.1

ViT-Huge+TBM (λ = 0) 35.7

ViT-Huge+TBM 38.6

Impact of the design of g. Next, we investigate different
designs for the module g, and the results are reported in
Tab. 3. Firstly, we ablate over the depth of g on all three
tasks, and find that when we increase the depth of g, the
performance improves, and then keeps stable. We find that
using 3 layers for all tasks reaches optimal performance in
the stable region. Next, we also replace the 3 simple fc-
layers with 3 self-attention layers, and find that the results
are similar. Thus, overall, we use 3 fc-layers in our design.

2. More Implementation Details
2.1. Training on Images

Detailed image pre-training procedure. For the train-
ing on corrupted RGB and depth images, we employ the
random sampling strategy as outlined in [9]. Each im-
age is split into 196 non-overlapping patches of approxi-
mately similar size. Then, patches are randomly selected to
be masked until 75% of them have been masked, i.e., 147
patches are masked, and 49 patches remain visible. When
patches are masked, the corresponding tokens are removed
and are not fed as input to the VT encoder. Instead, masked
tokens are introduced at the decoder for reconstruction pur-
poses. Following [9], we only apply MSE reconstruction
loss on the masked patches, and do not apply it on visi-
ble patches. During pre-training, following [9], our decoder
consists of 8 stacked Transformer blocks with a width of
512. We also employ a data augmentation strategy of ran-
dom resized cropping.

Detailed image linear probe hyperparameters. Af-
ter adding the linear layer, the VT encoder is frozen and
the final layer is trained using the cross entropy loss for 90
epochs with a batch size of 512. We use a LARS optimizer
and set the learning rate to 0.1. We also augment our data
using random resized cropping.

Table 3. Evaluation of various designs of g on three different tasks.

fc layers in g 1 2 3 4 5 3 self-attention

Accuracy (%) on ImageNet-C 37.5 38.2 38.6 38.7 38.6 38.5
Accuracy (%) on NTU60 78.6 79.0 79.1 79.1 79.0 79.0

Accuracy (%) on WRGBD 71.5 71.4 71.5 71.4 71.5 71.4

Detailed image fully-supervised training hyperpa-
rameters. For the supervised setting on images, the full
VT + linear layer is trained using the cross entropy loss for
400 epochs. ViT backbones are optimized using LARS op-
timizer with a learning rate of 0.1, while DEiT and Swin
backbones are optimized using AdamW optimizer with a
learning rate of 0.001. To augment our data, we use random
resized cropping.

2.2. Training on Skeleton Sequences

Detailed skeleton sequence tokenization procedure.
Following DSTA-Net [15], each input frame of the skele-
ton sequence is split into P patches, where the P presents
the number of joints which is 25 for NTU RGB+D datasets.
Each patch is converted to a token embedding using a map-
per comprising of a Conv2D layer with width of 256, a
BatchNorm layer and a LeakyReLU activation function. We
follow [12] to process all the skeleton sequences.

Detailed skeleton sequence masking procedure. Here,
we describe how we select the patches to mask during pre-
training. We follow the Spatial Temporal Masking strat-
egy in [14]. This strategy combines both Spatial Mask-
ing and Temporal Masking, where the model is forced to
1) learn to use relevant information from other (unmasked)
joints, which improves the model’s spatial awareness of the
skeletal structure and 2) learn plausible motions of skeletal
joints through an extended period of time, which improves
the model’s understanding of the temporal aspect of skeletal
sequences. Specifically, following [14], we set the tempo-
ral masking ratio to 80%, and spatial masking to involve 2
joints per frame.

Detailed skeleton sequence pre-training procedure.
When doing the masking procedure, we follow the same
strategy in [14] where the masked joints are removed and
not fed to the following encoding process. Masked tokens
are added before the skeleton decoder to be reconstructed
into the original skeleton sequence. For the skeleton de-
coder, we follow the basic structure of Kinetic-GAN [2]
that leverages 7 stacked basic ST-GCN blocks as the de-
coder network. We train it for 200 epochs with batch size
of 256.

Detailed skeleton sequence linear probe hyperparam-
eters. After adding the linear layer, the DSTA-Net encoder
is frozen and the final layer is trained using the cross en-
tropy loss for 90 epochs with a batch size of 256. We use a

SGD optimizer and set the learning rate to 0.1.
Detailed skeleton sequence fully-supervised training

hyperparameters. For the supervised setting on skeleton
sequences, the DSTA-Net+linear layer is end-to-end trained
using the cross entropy loss for 90 epochs with a batch size
of 256. Here, we adopt an SGD optimizer with a learning
rate of 0.1.

2.3. More TBM Details

In order to set α > 0 in practice while optimizing α
using gradient descent, we apply the ReLU function onto
our α parameters before using them to scale the noise. The
ReLU function will have the effect of mapping elements of
α into values ≥ 0 for scaling the noise. Moreover, we add
a skip connection over the TBM module, which helps with
convergence during training.

3. Future Work

In this work, we explore the scenario where training
and testing corruption types are the same, which is com-
monly seen in many real-world tasks, such as skeleton ac-
tion recognition and depth image recognition. As shown in
the main paper, our TBM can handle these tasks well and
achieve state-of-the-art results. In the future, we plan to
explore the adaptation to unseen corruption types, i.e., Un-
supervised Domain Adaptation (UDA) to new corruptions,
which is an even more challenging scenario. One possible
solution is to modify TBM to generate α based on the input,
which allows TBM to adapt flexibly according to the input
data, i.e., similar to a dynamic network [5, 10] that adapts
its parameters according to the input data.

Other future work includes experimentation on other
tasks which also involve noisy input data, such as pose esti-
mation [4,7,13,18,20,21]. We can also investigate applying
TBM to unified models [1,6,8,17] that tackle multiple tasks
simultaneously.

4. Analysis of E[Q|I] = E[P |I]

In Section 3.2 of our paper, we mention that E[Q|I] =
E[P |I], given our assumptions that P and Q are drawn from
the same distribution. Here we give theoretical justifications
of this.

E[Q|I] = E[Q|R+ P +Q = I] (1)

=

∫
q

q · Prob(Q = q,R+ P +Q = I)

Prob(R+ P +Q = I)
(2)

=

∫
q

q · Prob(Q = q, P = I −R− q)

Prob(R+ P +Q = I)
(3)

=
1

d

∫
q

q · Prob(Q = q, P = I −R− q) (4)

where d = Prob(R+ P +Q = I) is a constant.
On the other hand, we also get:

E[P |I] = E[P |R+ P +Q = I] (5)

=

∫
p

p · Prob(P = p,R+ P +Q = I)

Prob(R+ P +Q = I)
(6)

=

∫
p

p · Prob(P = p,Q = I −R− p)

Prob(R+ P +Q = I)
(7)

=
1

d

∫
p

p · Prob(P = p,Q = I −R− p) (8)

When P and Q have the same distribution, and thus the
same support, we can conclude that Eq. 4 = Eq. 8, and
E[Q|I] = E[P |I].

Note that above, we have the assumption that P and Q
have the same distribution. Thus, in the next section, we
analyse theoretically why our method can learn to enable
the synthetic corruptions Q to have the same distribution as
P .

5. Analysis that distribution of synthetic cor-
ruptions Q approximate distribution of
natural corruptions P

In the section above, we assume that Q and P come from
the same distribution. Here, we show why we can expect
this in practice, and show theoretical analysis to support
this. In short, it is because α can be meaningfully trained to
be similar to the underlying corruption distribution. Specif-
ically, the achieved loss will be higher, if α does not learn
to model the underlying corruption distribution well.

Following [11, 16, 19], the “natural” corruption distribu-
tion P is modeled as Gaussian with a mean of 0 and some
unknown standard deviations ω. In our TBM, the synthetic
corruption Q is drawn from Gaussian with standard devia-
tions α. We next show that if α ̸= ω, the produced boosted
features R̂ will be biased, and so there will be a higher loss
incurred.

To show that E[Q|I] = α2

ω2E[P |I], we first start by ana-
lyzing the conditional pdf of P .

Prob(P = p|I = i, R = r) =
Prob(P = p, I = i, R = r)

Prob(I = i, R = r)

(9)

=
Prob(P = p)Prob(Q = i− r − p)

Prob(I = i, R = r)
(10)

=
1

b1
Prob(P = p)Prob(Q = i− r − p) (11)

=
1

b2
exp

{
− p2

2ω2

}
exp

{
− (i− r − p)2

2α2

}
(12)

=
1

b2
exp

{
−α2p2 + ω2(i− r − p)2

2α2ω2

}
(13)

=
1

b2
exp

{
− (α2 + ω2)p2 − 2ω2p(i− r) + ω2(i− r)2

2α2ω2

}
(14)

=
1

b2
exp

−
p2 − 2ω2

(α2+ω2)p(i− r) + ω2

(α2+ω2) (i− r)2

2 α2ω2

(α2+ω2)

(15)

=
1

b2
exp

−
p2 − 2ω2

(α2+ω2)p(i− r) +
(

ω2

(α2+ω2)

)2
(i− r)2

2 α2ω2

(α2+ω2)

· exp

−
ω2

(α2+ω2) (i− r)2 −
(

ω2

(α2+ω2)

)2
(i− r)2

2 α2ω2

(α2+ω2)

(16)

=
1

b3
exp

{
−
(ω2

α2+ω2 (i− r)− p)2

2 α2ω2

(α2+ω2)

}
(17)

where b1, b2, b3 are constants. To get Eq. 10 by splitting
the joint distribution into marginals, we use the fact that
I = R + P + Q, and P and Q are independent of each
other. We note that the conditional distribution in Eq. 17 has
a mean of ω2

α2+ω2 (i − r). In other words, E[P |I = i, R =

r] = ω2

α2+ω2 (i− r). Doing the same for the conditional dis-

tribution of Q gives us E[Q|I = i, R = r] = α2

α2+ω2 (i− r).
Equating both of them gives us the resulting relationship:
E[Q|I = i, R = r] = α2

ω2E[P |I = i, R = r]. As this result
holds independently of R, we get E[Q|I] = α2

ω2E[P |I].

In our TBM module, we will use Eq. 1 of the main paper,
i.e., R̂ = 2F̂ − I to reconstruct R̂. Thus, our estimate
becomes:

R̂ = 2E[R+ P |I]− (E[R+ P +Q|I] (18)
= 2E[R|I] + 2E[P |I]− (E[R|I] + E[P |I] + E[Q|I])

(19)

= E[R|I] + E[P |I]− E[Q|I] (20)

= E[R|I] + E[P |I]− α2

ω2
E[P |I] (21)

= E[R|I] + (1− α2

ω2
)E[P |I] (22)

If α ̸= ω, this obtained term in Eq. 22 is not equal to E[R|I],
which is not desirable as it means that our boosted fea-
tures will be biased, i.e., R̂ ̸= E[R|I]. For example, when
α << ω and α2

ω2 is small and close to 0, we get an esti-
mate R̂ ≈ E[R|I] + E[P |I] = F , which means that almost
no boosting is done. On the other hand, when α >> ω,
our TBM module will over-compensate for the corruptions,
and we get a case where the corruption changes signs (from
E[P |I] to (1− α2

ω2)E[P |I]) and still affect the performance
of the task.

Failure to boost the tokens in the TBM module will lead
to a higher loss in the end-to-end objective, as analyzed in
Sec. 6 of the Supplementary. Thus, to minimize this loss,
the gradients will optimize α to become an approximation
of ω, i.e., α ≈ ω. Thus, α2

ω2 ≈ 1 and Eq. 22 becomes
E[R|I] + (1 − α2

ω2)E[P |I] ≈ E[R|I] as we intend, in order
to minimize the loss. This means that α will be trained to
be similar to ω, the parameters of the “natural” corruption
distribution.

6. Detailed Analysis of Section 3.4 of Main Pa-
per

The detailed derivation of Eq. 5 in the main paper is as
follows:

E
[

1

NV

NV∑
j=1

[Vj − (βU + c)j]
2

]
(23)

= E
[

1

NV

NV∑
j=1

[(βU + c+ ϵ)j − (βU + c)j]
2

]
(24)

= E
[1

NV

NV∑
j=1

ϵ2j
]

(25)

=
1

NV

NV∑
j=1

E[ϵ2j] (26)

=
1

NV

NV∑
j=1

V ar(ϵj) + E[ϵj]2 (27)

= γ2 (28)

Next, the detailed steps to get Eq. 6-8 of the main paper
is as follows:

E
[

1

NV

NV∑
j=1

[Ṽj − (βŨ + c)j]
2

]
(29)

= E
[

1

NV

NV∑
j=1

[(V + SV)j − (β(U + SU) + c)j]
2

]
(30)

= E
[

1

NV

NV∑
j=1

[ϵj + (SV)j − (βSU)j]
2

]
(31)

=
1

NV

NV∑
j=1

E
[
[ϵj]

2 + [(SV)j]
2 + [(βSU)j]

2

− 2[(SV)j][(βSU)j]− 2[ϵj][(βSU)j] + 2[ϵj][(SV)j]

]
(32)

=
1

NV

NV∑
j=1

E[ϵ2j] + E[(SV)
2
j] + E[(βSU)

2
j]

− 2E[(SV)j · (βSU)j]− 2E[ϵj · (βSU)j]

+ 2E[ϵj · (SV)j] (33)

=
1

NV

NV∑
j=1

E[ϵ2j] + E[(SV)
2
j] + E[(βSU)

2
j]

− 2E[ϵj]E[(βSU)j]− 2E[(SV)j]E[(βSU)j]

+ 2E[ϵj]E[(SV)j] (By independence) (34)

=
1

NV

NV∑
j=1

E[ϵ2j] + E[(SV)
2
j] + E[(βSU)

2
j]

(as E[ϵj] = E[(SV)j] = 0) (35)

=
1

NV

NV∑
j=1

(V ar(ϵj) + E[ϵj]2) + (V ar((SV)j)

+ E[(SV)j]
2) + (V ar((βSU)j) + E[(βSU)j]

2)
(36)

=
1

NV

NV∑
j=1

V ar(ϵj) + V ar((SV)j)

+ V ar((βSU)j) (By independence) (37)

=
1

NV

NV∑
j=1

(
γ2 + σ2

N +

NU∑
k=1

V ar(βjk(SU)k)

)
(38)

=
1

NV

NV∑
j=1

γ2 + σ2
N +

NU∑
k=1

β2
jkσ

2
N (39)

= γ2 + σ2
N +

1

NV

NV∑
j=1

NU∑
k=1

β2
jkσ

2
N (40)

Lastly, the detailed steps corresponding to Eq. 9-11 of
the main paper are as follows:

E
[

1

NV

NV∑
j=1

[Ṽj − (βU + c)j]
2

]
(41)

= E
[

1

NV

NV∑
j=1

[(V + SV)j − (βU + c)j]
2

]
(42)

= E
[

1

NV

NV∑
j=1

[ϵj + (SV)j]
2

]
(43)

= E
[

1

NV

NV∑
j=1

[ϵj]
2 + [(SV)j]

2 + 2[ϵj][(SV)j]

]
(44)

=
1

NV

NV∑
j=1

E[ϵ2j] + E[(SV)
2
j] + 2E[ϵj(SV)j] (45)

=
1

NV

NV∑
j=1

E[ϵ2j] + E[(SV)
2
j] + 2E[ϵj]E[(SV)j] (46)

(By independence)

=
1

NV

NV∑
j=1

E[ϵ2j] + E[(SV)
2
j] (as E[ϵj] = E[(SV)j] = 0)

(47)

=
1

NV

NV∑
j=1

(V ar(ϵj) + E[ϵj]2) + (V ar((SV)j) + E[(SV)j]
2)

(48)

=
1

NV

NV∑
j=1

V ar(ϵj) + V ar((SV)j) (49)

= γ2 + σ2
N (50)

References
[1] Zhiyang Chen, Yousong Zhu, Zhaowen Li, Fan Yang, Wei

Li, Haixin Wang, Chaoyang Zhao, Liwei Wu, Rui Zhao,
Jinqiao Wang, et al. Obj2seq: Formatting objects as se-
quences with class prompt for visual tasks. arXiv preprint
arXiv:2209.13948, 2022. 3

[2] Bruno Degardin, João Neves, Vasco Lopes, João Brito,
Ehsan Yaghoubi, and Hugo Proença. Generative adversarial
graph convolutional networks for human action synthesis. In
Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, pages 1150–1159, 2022. 3

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representa-
tions, 2021. 2

[4] Lin Geng Foo, Jia Gong, Zhipeng Fan, and Jun Liu. System-
status-aware adaptive network for online streaming video un-
derstanding. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2023. 3

[5] Lin Geng Foo, Tianjiao Li, Hossein Rahmani, Qiuhong Ke,
and Jun Liu. Era: Expert retrieval and assembly for early
action prediction. In Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXXIV, pages 670–688. Springer, 2022. 3

[6] Lin Geng Foo, Tianjiao Li, Hossein Rahmani, Qiuhong Ke,
and Jun Liu. Unified pose sequence modeling. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2023. 3

[7] Jia Gong, Lin Geng Foo, Zhipeng Fan, Qiuhong Ke, Hossein
Rahmani, and Jun Liu. Diffpose: Toward more reliable 3d
pose estimation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2023. 3

[8] Tanmay Gupta, Amita Kamath, Aniruddha Kembhavi, and
Derek Hoiem. Towards general purpose vision systems: An
end-to-end task-agnostic vision-language architecture. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 16399–16409, 2022. 3

[9] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. arXiv preprint arXiv:2111.06377, 2021. 2

[10] Tianjiao Li, Lin Geng Foo, Qiuhong Ke, Hossein Rah-
mani, Anran Wang, Jinghua Wang, and Jun Liu. Dynamic
spatio-temporal specialization learning for fine-grained ac-
tion recognition. In Computer Vision–ECCV 2022: 17th Eu-
ropean Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part IV, pages 386–403. Springer, 2022. 3

[11] Xuelong Li, Zhenghang Yuan, and Qi Wang. Unsupervised
deep noise modeling for hyperspectral image change detec-
tion. Remote Sensing, 11(3):258, 2019. 4

[12] Ziyu Liu, Hongwen Zhang, Zhenghao Chen, Zhiyong Wang,
and Wanli Ouyang. Disentangling and unifying graph convo-
lutions for skeleton-based action recognition. In Proceedings

of the IEEE/CVF conference on computer vision and pattern
recognition, pages 143–152, 2020. 3

[13] Xun Long Ng, Kian Eng Ong, Qichen Zheng, Yun Ni,
Si Yong Yeo, and Jun Liu. Animal kingdom: A large and
diverse dataset for animal behavior understanding. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 19023–19034, 2022. 3

[14] Wenkang Shan, Zhenhua Liu, Xinfeng Zhang, Shanshe
Wang, Siwei Ma, and Wen Gao. P-stmo: Pre-trained spatial
temporal many-to-one model for 3d human pose estimation.
In ECCV, page 461–478, 2022. 3

[15] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. Decou-
pled spatial-temporal attention network for skeleton-based
action-gesture recognition. In Proceedings of the Asian Con-
ference on Computer Vision, 2020. 3

[16] Yichun Shi and Anil K Jain. Probabilistic face embeddings.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 6902–6911, 2019. 4

[17] Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai,
Zhikang Li, Jianxin Ma, Chang Zhou, Jingren Zhou, and
Hongxia Yang. Ofa: Unifying architectures, tasks, and
modalities through a simple sequence-to-sequence learning
framework. In International Conference on Machine Learn-
ing, pages 23318–23340. PMLR, 2022. 3

[18] Tianhan Xu and Wataru Takano. Graph stacked hourglass
networks for 3d human pose estimation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 16105–16114, 2021. 3

[19] Tianyuan Yu, Da Li, Yongxin Yang, Timothy M Hospedales,
and Tao Xiang. Robust person re-identification by modelling
feature uncertainty. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 552–561,
2019. 4

[20] Long Zhao, Xi Peng, Yu Tian, Mubbasir Kapadia, and Dim-
itris N Metaxas. Semantic graph convolutional networks for
3d human pose regression. In IEEE CVPR, pages 3425–
3435, 2019. 3

[21] Weixi Zhao, Weiqiang Wang, and Yunjie Tian. Graformer:
Graph-oriented transformer for 3d pose estimation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 20438–20447, 2022. 3

	. More Experiments
	. More Implementation Details
	. Training on Images
	. Training on Skeleton Sequences
	. More TBM Details

	. Future Work
	. Analysis of E [Q | I] = E [P| I]
	. Analysis that distribution of synthetic corruptions Q approximate distribution of natural corruptions P
	. Detailed Analysis of Section 3.4 of Main Paper

