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In this supplementary material, we provide additional
details that we do not include in our main paper.

1. A brief survey of physical world attacks
In this section, we give a brief survey of existing physical

world attacks. We do not consider this survey as a separate
contribution of our paper, but rather an summary of how
naturalness are recognized and evaluated in current attacks.
We limit the surveyed work in our paper to the scope of ex-
isting survey [48], while this survey [48] do not summarize
attack naturalness. We carefully report if existing literature
claimed naturalness or stealthiness, and their methods to
evaluate naturalness. The survey is given in Table. 1 and 2.
A rise is shown in the focus of naturalness and stealthiness.
In 22 papers before 2020, 7 paper claimed to be natural or
stealthy (21%), while in 26 papers after 2020, this number
raise to 13 (50%), showing a rapid increase. The increasing
literature in this field motivates us to study the naturalness
evaluation and understanding naturalness of physical world
attacks.

2. Ethical discussions
Ethical discussions of our research. We briefly discuss

how our works can be applied for social good. Firstly, the
main motivation of our work is that physical world adver-
sarial attacks are highly harmful for applications that rely
on DNNs in physical world, yet its naturalness is still un-
known, confusing defenders of possible defense strategies.
In early stage of physical world attacks, physical world at-
tacks are highly unnatural, allowing human to recognize and
handle this attack easily. However, with large volume of
works claiming their attack is more natural than baselines,
it is unknown for defenders if human can still identify and
remove them easily, since many of them do not compare di-
rectly with clean scenario with no attacks. In our work, we
find while most physical world attacks are still unnatural,
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it can be more harmful under certain environmental config-
urations, or with certain semantic variations. Our findings
remind defenders that adversarial attacks can be more harm-
ful at certain occasions, while attackers might make it even
more harmful by guiding human gaze directions.

Secondly, despite adversarial attacks, another line of
works tries to generate defensive patterns in physical world
for DNNs to recognize more confidently, as well as getting
rid of adversarial attacks and extreme weathers [37, 50].
While these line of works serve as benign purpose, their
method and generated defensive pattern is similar to phys-
ical world adversarial attacks, which is unnatural and not
preferred by human. Our work helps to make their defen-
sive patterns more natural in daily lives.

Thirdly, natural physical world adversarial examples of-
fers a promising way to understand and test the robustness
of DNNs. While attacks can be difficult in physical world
because of environmental variations, natural physical world
attacks seeks to find a physical noise with maximum attack
capability under environmental variations, while achieving
minimal perturbations, thus probing the most brittle and
harmful part of DNNs. Being able to design natural physi-
cal world attack will help the design of robust DNNs.

Finally, while adversarial attacks can be harmful to
DNNs, it can also be used as privacy protection methods
against malicious surveillance technologies [6, 39]. In this
case, ordinary people are able to leverage easy-to-get phys-
ical world adversarial attack methodologies to prevent them
from being tracked by a malicious company. In such cir-
cumstances, a natural looking attack can encourage people
to use this kind of technology more frequently, and discour-
age the use of AI technologies in malicious surveillance.
Ethical discussions of experiments. We detail the ethical
concerns that might raise during the experiments. First, all
participants only viewed the pictures for 2.5 seconds. Ex-
periments were controlled to no more than 35 minutes so as
not to cause aesthetic fatigue. In fact, most of the partic-
ipants have commented that viewing these cars would not
have any influence on their aesthetic value, although they

1



Methods Year Natural? Evaluation Methods

Sharif et al. [40] 2016 Yes

AdvPatch [2] 2017 No -

Hendrik Metzen et al. [13] 2017 No -

CAMOU [59] 2018 No -

DPATCH [30] 2018 No -

EOT [1] 2018 Yes -

RP2 [10] 2018 Yes -

RP2 + [43] 2018 Yes -

ShapeShifter [5] 2018 No -

ILLC [25] 2018 No -

Rogue Signs [42] 2018 No -

Zhao et al. [60] 2019 No -

Thys et al. [46] 2019 No -

Lee and Kolter [26] 2019 No -

ShapeShifter [4] 2019 No -

advPattern [51] 2019 No -

D2P [21] 2019 No -

MeshAdv [55] 2019 Yes
Conduct a user study where participants are asked to recognize those adversarial object to the
ground-truth class or the adversarial target class.

PS-GAN [27] 2019 Yes -

AGN [41] 2019 No -

Morgulis et al. [33] 2019 Yes -

D2P [22] 2019 No -

AdvCam [8] 2020 Yes
Conduct a human perception study and ask human evaluators to choose whether a shown
image is “natural and realistic” or “not natural or realistic”.

PhysGAN [24] 2020 Yes -

Wu et al. [54] 2020 No -

Adv T-shirt [56] 2020 No -

Dynamic Adversarial Patch [14] 2020 No -

UPC [20] 2020 Yes -

Bias-based Attack [28] 2020 Yes -

Wu et al. [53] 2020 No -

Nakka and Salzmann [34] 2020 No -

Yang et al. [57] 2020 No -

Nguyen et al. [35] 2020 No -

DAS [49] 2021 Yes
Conduct human perception studies on recognition and naturalness. Participants are asked to
assign each of the camouflages to one of the 8 classes, from ”ground-truth” to ”I cannot tell
what it is”, and score the naturalness of the camouflages from 1 to 10.

LAP [45] 2021 Yes -

Meta-Attack [11] 2021 Yes -

Zolfi et al. [62] 2021 No -

Table 1. An overview of physical world adversarial examples, including year of publication, claimed natural or not, and evaluation methods
for naturalness. In 22 papers before 2020, 7 papers claimed to be natural (21%); while in 26 papers after 2020, this number raise to 13
(50%), showing a rapid increase.



Methods Year Natural? Evaluation Methods

Hu et al. [17] 2021 Yes Conduct a subjective survey and ask participants to rank the naturalness of each patch.

SLAP [31] 2021 No -

Sayles et al. [38] 2021 No -

Adversarial Mask [61] 2021 Yes -

AdvHat [23] 2021 No -

CAC [9] 2022 No -

DTA [44] 2022 No -

FCA [47] 2022 Yes -

TC-EGA [18] 2022 No -

TnTs [7] 2022 Yes
Conduct two user studies. In Study 1 participants are asked to choose the most natural patch
from given patches, and in Study 2 they are asked to compare the naturalness of adversarial
patches and real images.

SPAA [19] 2022 Yes Compare perceptual color distance and SSIM with other baselines.

Adversarial Sticker [52] 2022 Yes -

Table 2. (Table 1 continued) An overview of physical world adversarial examples, including year of publication, claimed natural or not,
and evaluation methods for naturalness.

revealed that some of the pictures were really unnatural.
Second, as only pictures in the real scenario were shown,
participants do not appear to grow aversion for paintings
on the car, nor do they grow the aversion towards the sce-
narios themselves. In fact, some participants (Participant
28 and Participant 100, denoted P28 and P100) commented
that the environment was natural and beautiful to some ex-
tent indeed. Third, pictures we selected do not appear to af-
fect participants’ perception towards these semantic mean-
ings. Participants only commented about the weird way
how pikachu were attached on the screen, but they do not
think pikachu would affect their own prior viewings of that
semantic pictures.

Ethical discussions of data collection. We detail the
ethical concerns that might arise in dataset collection. All
participants in our experiments are clearly informed con-
tents in our experiments and signed a consent that they agree
their subjective ratings and gaze signals to be used for non-
commercial research. Each participants are properly com-
pensated $15 for their time. The experiment do not contain
visually inappropriate, or sensitive contents (since only ve-
hicles are contained), while we carefully control experiment
design to avoid visual fatigue. Participants are able to quit
whenever they feel inappropriate, albeit we do not observe
such issue during experiment.

We took multiple efforts to ensure participants’
anonymity. First, we highlight that our data do not contain
personally identifiable data that uniquely defines an entity
(fingerprints, face, iris, etc), since only subjective ratings
and gaze fixations are collected. While information such as
sex and age are not considered as Personal Identifiable In-
formation, we do not disclose detailed information in our

dataset and these information are used to report participants
statistics only. To better protect anonymity, we also release
rating distributions and gaze distributions averaged across
multiple participants, leaving individual gaze data and rat-
ings intact.

3. Experiment details

3.1. Implementation details

We initialize all compared baselines using their own im-
plementations, network architecture and hyperparameters.
To unify drastically different optimization methods used
by baselines, for fair comparison, we use an Adam opti-
mizer with learning rate 3× 10−5 for all baselines. For our
own DPA, we randomly initialize prototype vector zℓ to a
1000-dimensional trainable vector, same as dimensions in
ResNet50. For attention alignment, GradCam of model at-
tention and human gaze are all calculated at size 224 ∗ 224
so as to ensure the same size as ResNet50. Hyperparameters
λ and γ are empirically set to 8 and 3 respectively, which
is determined by grid search. The train/valid/test split in
all experiments are set to 8/1/1. We train all methods by
20 epochs except 100 epochs for WaDIQaM to ensure its
convergence.

3.2. Evaluation metrics

We use Spearman Rank Order Correlation Coeffi-
cient (SROCC) and Pearson’s Linear correlation coefficient
(PLCC) as our evaluation metric, both is widely used in
IQA literature [58]. SROCC measures the correlation be-
tween the rank order of predicted scores and ground truth
scores. The higher SROCC is, the higher monotonic rela-



tionship is achieved between ground truth score and pro-
posed IQA method. Specifically, given N distorted images,
SROCC is computed as:

SROCC = 1−
6
∑N

n=1(vn − pn)
2

N(N2 − 1)
, (1)

where vn is the rank of ground truth MOS score yn, pn is
the rank of ground truth MOS score ŷn.

Similarly, Pearson’s Linear correlation coefficient
(PLCC, also called linear correlation coefficient, LCC in
some papers) measures the linear correlation between pre-
dicted scores and ground truth scores, calculated as:

PLCC =

∑N
n=1(yn − ȳ)(ŷn − ¯̂y)√∑N

n=1(yn − ȳ)2
√∑N

n=1(ŷn − ¯̂y)2
, (2)

where ȳ is the mean of ground truth score, ¯̂y is the mean of
predicted scores, respectively.

Additionally, we use cosine similarity (denoted as SC)
[32] to reflect the effect of attentive prior alignment loss.
Specifically, we reshape model attention and human gaze
into a one-dimensional vector, and calculate their cosine
similarity as:

SC =
S̃ · Ã

||S̃|| · ||Ã||
, (3)

in which Ã and S̃ denotes the flattened one-dimensional
vector of model attention A and human gaze S. We find
cosine similarity as a better measure of similarity, since
we find the area of gaze signal is relatively small. If LA

was used as similarity, methods such as LPIPS can cheat to
achieve “higher” alignment by having uniformly zero model
attention A, such that it achieves small LA, yet not focusing
on vehicle at all.

3.3. Overall training algorithm

The overall training algorithm of DPA can be seen in Al-
gorithm. 1. To align model behavior with human gaze and
human rating distribution, we design Dual Prior Alignment
(DPA) to imitate the naturalness assessment process of hu-
man. Without bells and whistles, we use a ResNet50 back-
bone as feature extractor. Then, we calculate pseudo proba-
bility pℓ(x, z) of each image and align it with human rating
distribution by rating prior alignment loss (RPA) loss LR.
Next, we calculate the modified attention map A(x, p) and
then align it with human attention by attentive prior align-
ment loss LA.
3.4. Generalization settings

In this section, we detail reasons to use our current gen-
eralization setting. While generalization towards unseen
attacks can be tested by holding out one group of attacks

Algorithm 1 Training of Dual Prior Alignment Network

Input: Image database D, human rating distribution r, hu-
man gaze saliency map S, human MOS score y, back-
bone network fθ.

Output: Predicted naturalness score ŷ.
Randomly initialize prototype zℓ for each rating levels.
for Minibatch x in dataset D do

Calculate pℓ(x, z) by Eqn. 1.
Calculate LR, LS by Eqn. 2 and LS =
1
N

∑N
n=1 ||ŷn − yn||22.

Calculate A(x, p) by Eqn. 5.
Calculate LA using A(x, p) and S by Eqn. 6.
Update θ and z by backpropagating Eqn. 7.

end for
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Figure 1. Understanding our generalization setting. (a) General-
ization do not well capture the correlation within class. (b) Results
of DPA well captures the rank order between different classes. (c)
Baseline (MANIQA in this illustration) failed to capture the rank
orders. In (b) and (c), grouped ratings corresponds to different
baselines.

and testing results within this group individually, such as
Fig. 1a, such method do not consider generalization be-
tween different groups. It is possible for a method to
achieve high correlation within its own group, yet having
very low correlation outside its group. Since the overall
goal of attack naturalness evaluation is to determine which
method is more natural, in generalization settings, correla-
tions between groups (between attack baselines) are con-
sidered more important. For example, in Fig. 1c (using
MANIQA as baseline, each image cluster represents an at-
tack baseline), the generalization result of the second clus-
ter of images (in gray box) achieves high correlation within
its own group, yet are rated much higher than its ground
truth and higher than other predicted results. This violation
of rank order is very harmful since MANIQA gives a false
sense of ratings that the second cluster of images used have
higher naturalness, yet these baseline itself is far less natu-
ral than imagined. Our DPA is free of this problem. Shown
in Fig. 1b, all image clusters well represents its relative
magnitude, thus better represents the quality of each attack
baselines.

But how to represent and test this property? One feasible
way is to test the generalization result (the attack baseline
hold out for test only) with training data together. However,



we argue using training data in evaluating test capability is
improper. To get rid of this problem and evaluate our gener-
alization fairly, we propose for all seven groups (i.e., attack
patterns), we hold one group out for testing, and use the rest
six groups for training. This process is repeated for seven
times, each time holding out a distinct attack pattern. Af-
ter all seven trainings are over, we got testing result from
all seven groups from seven trained models. However, at
this time, all images in testing set are not seen a priori to
these seven trained models, respectively. Finally, correla-
tion coefficients are calculated by the result of concatenat-
ing all seven testing set. This results in testing on the whole
PAN dataset, yet all evaluated images are not seen in test set,
which is consistent with generalization setting. The process
is similar to a seven-fold cross validation, while holding out
one group each time and reporting the merged result across
each training as the final result.

4. Introduction of statistical tests

We provide an introduction of statistical tests
here, while a more detailed tutorial can be seen in
http://depts.washington.edu/acelab/proj/ps4hci/index.html.
The overall goal of statistical test is to determine if there are
enough reasons to “reject” a hypothesis, with randomness
in evaluation process. For example, to validate a claim
made in insight 1 in our main text, “distance has significant
effect on naturalness”, the corresponding hypothesis is
“distance have no effect on naturalness”. While the mean
value of naturalness differs under different distances, it is
unclear if this difference arise because of randomness in
human ratings, or if there is indeed a significant difference.
Statistical test calculates the probability p this hypothesis
holds: a p < .05 means there exists sufficient reason
to reject the hypothesis, or “distance have an effect on
naturalness”, while p > .05 means there is no sufficient
reason to reject the hypothesis (which means, distance has
no effect on naturalness). Oftentimes we are interested
in rejecting the hypothesis, with statistical significance
reported under two levels: p < .05, meaning the probability
that the difference is because of randomness is lower than
.05 and p < .001, meaning the probability that difference is
due to randomness is less than .001. If the hypothesis is not
rejected, p value are directly reported.

4.1. Analysis of variance

ANOVA is based on the law of total variance, where the
observed variance in a particular variable is partitioned into
components attributable to different sources of variation.
In its simplest form, ANOVA provides a statistical test of
whether two or more population means are equal, and gen-
eralizes the t-test beyond two means.

4.2. One-way analysis of variance

One way ANOVA is a technique that can be used to com-
pare whether two sample’s means are significantly different
or not (using F distribution). This technique can be used
only for numerical response data, and numerical or categori-
cal input data. The ANOVA tests the null hypothesis, which
states that samples in all groups are drawn from populations
with the same mean values. If the gorup means are drawn
from populations with the same mean values, the variance
between group means shoule be lower than variance of the
samples, following central limit theorem. A higher ratio
implies that samples were drawn from populations with dif-
ferent mean values.

4.3. Two-way analysis of variance

Two way ANOVA is an extension of one-way ANOVA
that examines the influence of two different categorical in-
dependent variables on one continuous dependent variable.
Two-way ANOVA not only aims at assessing the main ef-
fect of each independent variable but also if there is any
interaction between them.

4.4. Tukey’s honest significance test

Also known as Tukey’s tets, it is a isngle-step multiple
comparison procedure and statistical test, which is used to
find means that are significantly different from each other.
It applies simultaneously to the set of all pairwise compar-
isons µi − µj and identifies any difference between two
means greater than the expected standard error.

4.5. Dunnett’s test

Dunnett’s test is a multiple comparison procedure. While
Tukey’s and Scheffe’s methods allow any number of com-
parisons among a set of sample means, Dunnett’s test only
compares one group with the others, addressing a special
case of multiple comparisons problem, doing pairwise com-
parisons of multiple treatment groups with a single control
group.

4.6. Mann-Whitney U test

Mann-Whitney U test is a nonparametric test of the null
hypothesis that for randomly selected values X and Y from
two populations, the probability of X being greater than Y
is equal to the probability of Y being greater than X.

4.7. Levene’s Test

Levene’s test is an inferential statistic used to assess the
quality of variances for a variable calculated for two or more
gorups. Some commomn statistical procedures assume that
variances of populations from which different samples are
drawn are equal. Levene’s test assesses this assumption. It
tests the null hypothesis that the population variances are



Variation Values

Background Crossroads, Parking Lot

Illuminance Day, Night

Yaw Angle 0◦, 45◦, 90◦, 135◦, 180◦, −45◦, −90◦, −135◦

Pitch Angle 22.5◦, 45◦, 67.5◦, 90◦

Distance 5m, 8m, 10m

Table 3. Values for environmental variations in our PAN dataset.

equal. If the resulting p-value of Levene’s test is less than
some significance level, the obtained differences in sample
variances are unlikely to have occurred based on random
sampling from population with equal variances. Thus, null
hypothesis of equal variances would be rejected.

5. More details of PAN dataset
5.1. Variations

Environmental variations. We survey the common en-
vironmental variations in current physical world attacks and
thus consider backgrounds, illuminance, yaw angles, pitch
angles and distances for each baseline in PAN dataset. All
values taken for each variation can be seen in Table. 3.

Diversity variations. For fair comparison, we select 10
diversity for each baselines, which is assembled from model
diversity and semantic diversity. Model diversity refers to
generating attack pattern based on 10 different recognition
models, including 7 classification models and 3 object de-
tection models. Semantic diversity contains 10 different im-
ages to constrain attack patterns, which is illustrated in Fig.
2 in our main text. Note that not all attack methods sup-
port all forms of variations. For example, CAMOU [59]
and MeshAdv [55] do not constrain their attack by a natu-
ral image. Their diversity thus contains 10 model diversity
only. For painting baseline, no attack is added, thus their
diversity contains 10 semantic diversity only. For DAS [49]
and AdvCam [8], we combine their diversity effect by 2
model diversity (ResNet50, DenseNet161) and five seman-
tic diversity (smile, cat, dog, bird, pikachu). For UPC [20],
attacks are generated on FasterRCNN, following their de-
fault settings, while we select 10 semantic diversity for it.
Details about the model diversity and semantic diversity can
be seen in Table. 4.

Baseline reproduction. To examine the correctness of
our code, we test the attack capability of all our reproduced
baselines following the code of DAS [49], following their
default settings. We compare our reproduced code with
DAS since we all test on CARLA environment, such that
the results are comparable. The reported result in DAS and
our reproduced result are given in Table. 5. The result of
Clean, MeshAdv and DAS follows the same trend with the
result in original DAS paper, while our reproduced results

are uniformly 3% higher than original DAS, which could
be explained by randomness, or difference in experimental
minutiae. For the higher attack capability of CAMOU and
UPC, in DAS paper, they used the released attack pattern by
CAMOU and UPC directly, while we train them in CARLA
environment from scratch. For painting and AdvCam, their
attack results are not compared in DAS, thus also unavail-
able in Table. 5.

Impact of different variations. We divide our PAN
dataset by different variations, and calculate the perfor-
mance of the images on each subset respectively to find
the tradeoff between attack capability and naturalness, and
the impact of each variation. We use Mean Opinion Score
(MOS) to denote naturalness and Attack Success Rate
(ASR) to denote attack capability (calculated by attacking
ResNet152, a black-box model to all our used models). For
each variation, the line graph for each baseline at different
values of that variation is given in its corresponding plot.
See Fig. 2 for all baselines’ performance under each varia-
tion. While an inverse relationship between attack capabil-
ity and naturalness can be found in general, some levels are
typically more natural and having higher attack capability,
which might be more harmful in reality.

5.2. Data properties

Human ratings. To aggregate subjective human ratings,
we use Mean Opinion Score (MOS) after outlier rejection
to calculate the naturalness of each image. Following prior
works [12], MOS is calculated by averaging the individual
opinion scores from multiple subjects.

Gaze saliency map. After obtaining all human fixations,
the saliency map of human gaze distribution can be gener-
ated by applying a Gaussian mask of the same shape to each
human fixation points [29]. The saliency map of each im-
ages can be calculated as:

Si(k, l) =
1

C

|Ji|∑
j=1

T∑
t=1

exp

[
−
(k − f j,t

k )2 + (l − f j,t
l )2

σ2

]
,

(4)
where (k, l) is the coordinates of saliency map Si, i refers to
the ith image in dataset. j ∈ Ji is the participant who rated
image i. f j,t

k and f j,t
l is the fixation point of participant j at

time t, at coordinate k and l. σ is the standard deviation of
Gaussian (i.e., σ=0.33 is recommended for our eye tracker
➀). Finally, C is the normalization constant that normalize
the sum of Si to 1.

Participants. A total of 126 participants (57 female, 69
male, age=22.2±3.3) were recruited from campus. All with
normal(corrected) eyesights. None of them were familiar
with image quality assessment experiments.

➀See https://github.com/TobiasRoeddiger/GazePointHeatMap for
more details.



Baseline Model Diversity Semantic Diversity

Clean - -

CAMOU [59] ResNet50, DenseNet161, VGG16, Inception-v3, MobileNet-v2,
EfficientNet-b0, MnasNet, YOLOv4, Faster R-CNN, Mask R-CNN

-

MeshAdv [55] ResNet50, DenseNet161, VGG16, Inception-v3, MobileNet-v2,
EfficientNet-b0, MnasNet, YOLOv4, Faster R-CNN, Mask R-CNN

-

DAS [49] ResNet50, DenseNet161 Smile, Cat, Dog, Bird, Pikachu

UPC [20] Faster RCNN
Smile, Cat, Dog, Bird, Pikachu, Flower, Bird2, Dog2,
Flower2, Hello Kitty

AdvCam [8] ResNet50, DenseNet161 Smile, Cat, Dog, Bird, Pikachu

Painting -
Smile, Cat, Dog, Bird, Pikachu, Flower, Bird2, Dog2,
Flower2, Hello Kitty

Table 4. Model and semantic diversity of all baselines.
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Figure 2. The naturalness and attack capability of the images at different settings in PAN dataset. For pitch angles, we remove 90◦ because
ResNet152 has a 0% classification success rate for clean images in that case.

Baseline Accuracy(%)

Clean Painting CAMOU MeshAdv DAS UPC AdvCam

Original 73.51 - 48.93 35.33 32.49 48.18 -

Ours 77.33 66.75 41.73 38.27 35.87 41.73 40.80

Table 5. Test results of DAS (original) and ours.

Labortary setup. The images were displayed on a 16-
inch(2560*1600) resolution integrated screen for experi-
ment. A low light room was used with an approximate
viewing distance about 70cm. A Tobii Eye Tracker 5
(equipped in front of the screen) was adapted for eye gaze
tracking. It records eye gaze points at about 60 GP/sec. A
calibration process was done before the experiment.

Stimuli presentation. We adopt a single stimulus con-
tinuous procedure for naturalness evaluation [36] and ask
the participant to focus on and evaluate the naturalness of
the image. To avoid the interference of rating naturalness
on gaze signal collection, evaluation of each image follows
a 2 phase process. In phase 1, an image was selected from
PAN dataset and participants were asked to look at this im-
age for 2.5 seconds, with eye tracker activated to collect
eye gaze points. The time is determined by our pilot study
to ensure eye gaze coverage and prevent fatigue. In phase
2, a dark screen was shown, while participants were asked
to rate the image by a 5-point Absolute Category Rating
(ACR) scale [15], i.e., bad (1), poor (2), fair (3), good (4)
and excellent (5). They were guided to rate from the per-
spective that whether the picture was natural and beautiful



in physical world setting. To minimize the interference of
rating process on gaze signal, participants were asked to
press 1-5 on keyboard to give the rating and press enter to
evaluate the next image, without needing to actually look at
the keyboard.

Experiment process. Each participants were asked to
evaluate 320 images in the 2 phase process, resulting in a
total of (320 ∗ 126 =)40320 image ratings. We shuffle the
dataset such that each participant view no repeated image,
whereas each image will be rated by 15 participants (totally
(15∗2688 =)40320 images) when all experiments are over.
The images were divided into 8 sessions, each session con-
taining 40 images, with a warmup session (40 images) at
the beginning, images used in warmup session is randomly
selected for each participant. To reduce fatigue, there is a
rest session with at least 20 seconds between two sessions.
It takes participants no more than 35 minutes to finish all
experiments so as to avoid fatigue [3]. Each participant was
compensated $15.

Quality control.
Line clickers During the period of scoring, we have ob-

served from the data that 3 of the participants (2 female, 1
male) have chosen over 80% the same score. We judge from
the setting similar to Koniq10k [16] that they were line-
clickers. We remove all their ratings and gaze data from
PAN dataset.

Outliers Similar to Koniq10k [16], we used SROCC as a
metric to judge whether a worker is an outlier. We removed
the pictures from the workers with the least SROCC score
(6.54%) calculated with the full-volume data.

Quality control of scoring During the examination of
scores, we find that some of the scores were unfit for the
certain participant as well as the certain picture. We further
used SROCC as an metric, from the dimension of partici-
pant as well as picture to judge whether a picture has high
congruence with the whole dataset. We removed the ones
with the least score (9.36%), resulting in an increase on In-
traclass Correlation Efficient (ICC) of 0.12 (from 0.22 to
0.34). We shall note that, while the images we evaluate
are from different domains comparing with KonIQ-10k, the
ICC results of our PAN dataset and KonIQ-10k are not com-
parable. However, the improvement of ICC in our method is
similar to KonIQ-10k (+0.12 in our paper, +0.13 in KonIQ-
10k). We further calculated SROCC score using bootstrap-
ing following KonIQ-10k [15] and the results were shown
in Fig. 3. We observe similar SROCC improvement trend
of KonIQ-10k and our PAN dataset. Note that since KonIQ-
10k are collected via crowdsourcing, they have larger num-
ber of observers. However, our PAN dataset additionally
provide high-quality gaze signal which supports human be-
havioral analysis, which is not possible in KonIQ-10k.

Quality control of gaze We considered the quality of
gaze important since (1) it could reflect the engagement of
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Figure 3. Testing inner coherence of our PAN dataset by boot-
strapping participants’ scoring data. Result shows similar trend
with KonIQ-10k dataset.

Figure 4. Exemplar images of PAN-Phys in physical world set-
tings. PAN-Phys contains 504 images collected in real world,
which includes variance in pitch angles, yaw angles and back-
grounds. Similar to PAN, we collect human ratings and human
gaze for all images.

the certain participant during experiment; (2) gazing data
is an essential part to be adopted and analyzed throughout
our work. Unqualified eye gaze data mainly consist of the
following situations: (1) eye gaze data of the pictures were
unable to be collected due to problems of eye tracker; (2)
participants were unable to concentrate effectively on the
picture due to their own reason; (3) participants who con-
centrate on too small an area that we considered it not a
valid gaze. We only removed these unqualified eye gaze
data (27.58%) according to corresponding criteria.

5.3. PAN-Phys dataset: PAN dataset in physical
world

To verify the generalization capability of PAN in real
world, we propose PAN-Phys dataset, which contains 504
real world images with 8 pitch angles (0◦, 45◦, 90◦, 135◦,
180◦, 225◦, 270◦, 325◦), 3 yaw angles (0◦, 45◦, 90◦) and
3 backgrounds (shot in three different places in our lab).
Since painting adversarial patterns in real vehicles is costly,
we use a toy vehicle and stick paper-printed adversarial pat-
terns by HP Color LaserJet Pro MFP M281fdw on the toy
vehicle to mimic real world scenarios. We photo all images
by a Huawei Mate 40 Pro camera. Exemplar images are
shown in Fig. 4. After acquiring all images, we collect hu-
man gaze and human ratings using the same protocol and



procedures as our PAN dataset.
As a dataset photoed in real world, the environment set-

ting and vehicle of PAN-Phys is significantly different from
PAN, thus acts as a good testbed for (1) testing domain gen-
eralization. The model trained on PAN should also work
well in PAN-Phys. (2) testing domain adaptation, where al-
gorithms trained on PAN can leverage PAN-Phys to adapt
their assessment to real world scenarios. (3) understanding
the domain gap between real world and CARLA simulation
environment. Statistical tests can be applied to gain further
insight of human decisions and human behaviors via ana-
lyzing human ratings and human gaze in two domains. We
defer these experiments as future work.

6. Physical naturalness assessment protocol
To solve these problems and avoid bias mentioned in In-

sight 2, we design Physical Naturalness Assessment Pro-
tocol (PNAP) to standardize subjective naturalness assess-
ment in physical world attack. While PAN tests on large
number of images that might be burdensome to researchers,
PNAP picks a minimal subset of factors in PAN (10 images
for each attack pattern), while maximally maintaining con-
sistency with results in PAN by keeping statistical signifi-
cance of ranks and values between baselines. In order to fa-
cilitate fast and automatic process and assessment of image
naturalness, we proposed Physical Naturalness Assessment
Protocol, a suggestion for which factor and which picture
should be considered during naturalness evaluation. We re-
vealed the exploration and execution steps in a sequence.

6.1. Factor pruning criterion

Factor pruning of PNAP follows two criterion. Overall,
a pair of factors should be kept if baselines has different
rankings under these pairs, and the ranking difference is not
attributed to randomness. First, we prune a factor if the
rank order of different baselines is consistent in different
levels of this factor, such that testing on any level of factor
provides identical result (i.e., prune the factor if p < .05).
Second, if the first criterion does not hold, we prune the fac-
tor if the value of baselines is not statistically significant in
different levels of that factor, such that violations in rank
order can be attributed to randomness (i.e., prune the factor
if p > .05). If both criterion are not satisfied, we run a pair-
wise post-hoc test between each factor levels and determine
the smallest subset of levels of this factor that satisfy the
two criterion above.

6.2. Evaluation process

Experiment process. Based on criterion discussed
above, the environmental factors left for evaluation are:
pitch angle: 67.5◦, 90◦; yaw angle: -90◦, -45◦, 45◦, 90◦,
135◦. All levels of distance, background and illuminance
are pruned (i.e., select any level yields equal result), so we

use distance-5m, background-crossroads, illuminance-light
for simplicity. As a result, for each attack pattern, 10 im-
ages with different environmental factors are used for eval-
uation. We recommend using Absolute Categorical Rating
(ACR) [15] to collect human rating.

Data analysis. We recommend using one-way ANOVA
for data analysis. Improvement in naturalness could be
claimed if significant effect are found (p < .05) and the
mean value of newly proposed attack is higher than all base-
lines.

6.3. Discussion

While PNAP struggles to alleviate cherry picking, we
acknowledge that PNAP might not rule out all bias, since
new attacks is not contained in PAN and might have unique
visual characteristics. However, PNAP still provides a valu-
able first step to alleviate the bias arise from the disparate
impact caused by environmental variations, and we suggest
using PNAP for a more solid and comprehensive evaluation.

7. Investigation of the correlation between se-
mantic pictures and cars

Through the analysis of different semantic pictures’
MOS, we found that semantic factors may significantly
affect the naturalness of the pictures. Hence we further
conducted a user study to investigate whether cars affect
peoples’ naturalness perception of the semantic pictures,
namely whether the car would affect people’s perception of
pictures’ naturalness.

7.1. Design, apparatus and participants

We used a between group design to investigate the ef-
fect of cars on the semantic pictures in order to minimize
the inner influence of cars. We recruited (14*2=)28 partic-
ipants (16 female, 12 male, age=21.3, SD=4.1) from cam-
pus. Each participant was presented 10∗9/2 =45 questions
using a questionnaire and all participants have filled in the
questionnaire without dropping.

7.2. Procedure

Each participant was asked to rate 10 image in pair, re-
sulting in 45 pairs. The order of the image pairs were ran-
domized and predetermined. For each pair of picture per
participant, they were asked to judge which picture is more
natural using a True of False question. We thus collected
(45*14=)630 judges in total. Each participant took about
5 minutes to complete the judging process. For those who
need to rate which semantic pictures attached to the cars
were more natural(Group 1, G1), we separated the semantic
pictures and the cars, then asked the participants to perceive
”Attaching which semantic picture to the car would be more
natural”. For those who need to rate which semantic pic-
tures themselves would be more natural(Group 2, G2), we



only present semantic pictures and asked the participants to
perceive ”which semantic picture would seem more natu-
ral”. Thus, we could judge whether the presence of cars
would affect the naturalness of semantic pictures.

7.3. Result and analysis

We firstly analyzed which picture gained the most pref-
erence by participants. For image pair (Image A and Image
B), if the participant thought Image A is more natural than
Image B, we would add one point to Image A and add zero
point to Image B. Hence using this method, the naturalness
of images could be reflected from the total points a image
earned. For G1, the top-3 favorite semantic pictures were
cat, dog and pikachu1 while for G2 the top-3 favorite se-
mantic pictures were flower, bird and cat. Participants pref-
erence showed significance (Mann Whitney test was used
between independent samples, Z = −3.724, p < .001).
Further interview with participants shown that participants
tended to more focused on the ”semantic meanings of the
picture” when asked ”Attaching which semantic picture to
the car would be more natural”(G1, P9). However, partici-
pants tended to be more focused on the ”structural meanings
of the picture” when asked ”Which semantic picture would
seem more natural”(G2, P11). Through the interview pro-
cess with the participants, we arrived at the conclusion that
the existence of car caused the change of perception atten-
tion, resulting in different naturalness assessment scores.

8. Improve naturalness with DPA
While initially proposed as a naturalness evaluation

method, in this section, we explore the possibility to use
our DPA method as an optimization metric to improve nat-
uralness of existing physical world attacks (i.e., DAS). To
ensure comparison consistency, we first train DAS to mini-
mize its own original loss function:

minLd + λLe + Ls. (5)

To tradeoff attack capability and naturalness, we select λ to
0, 1e-5, 1e-4 and 1e-3, respectively. Note that 1e-4 is used
in their official code. In subsequent sections, we refer these
results as DAS, while λ=1e-4 referred as original DAS.

To improve naturalness of DAS, we add DPA on DAS by
directly subtracting the naturalness ratings of the images in
the loss function to optimize naturalness:

minLd + λLe + Ls − γLn, (6)

where Ln is the naturalness ratings of the images assessed
by DPA. Example of the generated camouflages are shown
in Fig. 5. To quantify the effect of DPA, we kept λ to 1e-
4 used in their official code, while changing the magnitude
of γ as 0, 1, 2 and 3 to evaluate its impact. We call set-
tings with γ= 1, 2, 3 as DAS+DPA. DAS+DPA reduces to
original DAS when γ=0.

Figure 5. Comparison of the textures before and after subtracting
the naturalness ratings assessed by DPA in the loss function of
DAS.

To subjectively evaluate naturalness ratings, we recruited
11 participants (9 male, 2 female, age=22.91, SD=3.12)
from campus to evaluate the naturalness of our attack, none
of these participants took part in our prior experiments. We
strictly follow our proposed PNAP protocol, generating 10
images for each attack patterns and show each images in
a predetermined random sequence, resulting in a total of
70 images (3 DAS, 3 DAS+DPA, 1 original DAS). The
experiment follows the same setting and interface as PAN
dataset collection using 5-point Absolute Categorical Rat-
ing (ACR), the only difference is we do not collect gaze
signal for simplicity. The experiment takes approximately
5 minutes, each participant was compensated $1 for their
time.

8.1. Comparing naturalness with PNAP

We first evaluate the impact of DPA on improving nat-
uralness of DAS. Following our proposed PNAP protocol,
we compare DPA+DAS setting with original DAS. Adding
DPA improves naturalness of DAS by a significant mar-
gin, i.e., γ = 2 (One way ANOVA, F1,110 = 12.05, p <
.001, +18.93%) and 3 (One way ANOVA, F1,110 = 3.82,
p < .05, +18.93%). When γ = 1, DPA was too small
have significant effect on naturalness (One way ANOVA,
F1,110 = 0.02, p = 0.874, n.s.) or attack capability.

While the comparison demonstrates naively adding DPA
to DAS improves naturalness, it is possible that this im-
provement results in sacrificing attack capability. To ad-
dress this concern, we compare the attack-naturalness trade-
off in the subsequent section. Statistical tests are not avail-
able in this setting since requires prohibitively large com-
putation resources to tune attack hyperparameters in order
to ensure different attacks have exactly the same attack ca-
pability. Moreover, it might be impossible for some old at-
tacks to achieve high attack capability as SOTA methods.
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Figure 6. Improving attack naturalness by DPA. Green line refers
to DAS with different naturalness adjustments. Blue line requires
DAS+DPA, with different magnitude of DPA. Red dot refers to the
original parameter used by DPA.

Category Method SROCC (↑) PLCC (↑) SC (↑)

FR-IQA

PSNR 0.3560 0.3685 -
SSIM 0.4573 0.3968 -
LPIPS 0.0256 0.0128 0.0019

E-LPIPS 0.1515 0.4173 0.0461

Others GIQA(KNN) 0.0900 0.0637 -
GIQA(GMM) 0.1231 0.0839 -

NR-IQA

BRISQUE 0.0593 -0.0130 -
ResNet50 0.4925 0.4461 0.2235
WaDIQaM 0.3242 0.3187 0.2470
RankIQA 0.2920 0.2834 0.0336
DBCNN 0.3539 0.3171 0.2229

HyperIQA 0.4790 0.4403 0.1871
Paq2Piq 0.3639 0.3274 0.1540

MANIQA 0.1550 0.1863 0.0790
NR-IQA DPA (Ours) 0.5468 0.4856 0.7630

Table 6. Generalization results of DPA and other baselines on PAN
dataset. By imitating human behavior, DPA also gets strong gen-
eralization capability comparing with baseline methods.

8.2. Generalizing to unseen attacks

For DPA to reliably estimate attack naturalness, it must
be ensured new attacks keep the same order with others.
To solve this problem, we follow a 7-fold cross validation
setting, taking out one evaluated method from training set
each time. Next, we concatenate all testing set of 7-fold
cross validation and report it as our final result, such that
the generalization result of all evaluated methods are fairly
evaluated. See detailed illustration in supplementary mate-
rials. As listed in Table. 6, we can draw several conclusions
as follows:

(1) DPA improves generalization over the best baseline
(ResNet50) by 0.0543 (+11.02%) in SROCC and 0.0395
(+8.85%) in PLCC. While human has high generalization
capability, we are surprising to find in DNNs, aligning with

human behaviors also leads to better generalization.
(2) Shown in Fig. ??, during generalization, model at-

tention of DPA keeps aligned with human gaze, achieving
208.90% higher SC comparing with the best baseline.

8.3. Naturalness-attack tradeoff with DPA

In this section, we illustrate the tradeoff between nat-
uralness and attack capability by comparing DAS with
DAS+DPA. As illustrated in Fig. 6, DAS+DPA achieves
higher attack capability as well as higher naturalness com-
paring with DAS. Perhaps surprisingly, we even find using
DPA improves the attack capability of original DAS some-
times. Comparing with the most natural variation of DAS,
DAS+DPA improves naturalness by 8.65% and attack capa-
bility by 11.21%, respectively. Moreover, comparing with
the original version of DAS, DAS+DPA improves natural-
ness by 18.93% and attack capability by 2.70%, respec-
tively. The experiment results points out our DPA indeed
helps improve naturalness, while still maintaining reason-
able attack capability.

Due to the time limit, we conduct experiments of using
DPA to improve attack naturalness on DAS only, leaving
experiments to improve other attacks by DPA as our fu-
ture work. Overall, in this paper, we take a first step to
evaluate naturalness of physical world attacks, we deem
improving attack naturalness by environment modulation,
guiding human gaze to enhance naturalness or using DPA
more smartly and robust to adversarial attacks as our future
research direction.
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