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In this document, we first provide the pseudo code of
our approach in §A. Then, additional analyses with respect
to pseudo mask updating and recurrent refinement are pre-
sented in §B and §C, respectively. Last, §E offers additional
qualitative segmentation results.

A. Pseudo Code
The inference mode of our method is summarized in

Alg.S1. Note that the recurrent refinement procedure is in-
cluded.

B. Analysis of Pseudo Mask Updating
During training, our method conducts online space-time

clustering to progressively refine pseudo masks with grad-
ually improved visual representations. Fig. S1-S4 provide
qualitative analysis of this strategy on YouTube-VOS [1]
train. Here, ‘Initial’ corresponds to the pseudo masks
created right after correspondence learning, while ‘Final’
refers to the masks that are obtained after nine online up-
dates (once per 10 epochs from epoch 300 to 400). The first
row shows the clustering results and the second row gives
the pseudo masks derived from the clustering results. We
can see that 1) our correspondence learning can indeed pro-
vide meaningful features for reliable clustering, leading to
satisfactory initial pseudo labels, and 2) the pseudo masks
are continuously improved with online updating, e.g., back-
ground are suppressed and foreground are progressively
highlighted and more spatiotemporally consistent.

C. Analysis of Recurrent Refinement
In Fig. S5, we further analyze visual effects of recurrent

refinement over three representative sequences on DAVIS17

val. For Round 0, we directly leverage Vq (Eq. 7) for mask
decoding. For Round 1, the segmentation results (i.e., Ŷq)
are produced following Eq. 9. For Round 2, we replace Y q
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in Eq. 9 by Ŷq (in Round 1) and subsequently conduct mask
decoding to yield refined masks. It can be observed that the
segmentation quality is progressively improved with itera-
tive refinement, consistent with the results in Table 5e.

Algorithm S1 Pseudo-code for the inference mode of our
approach in a PyTorch-like style

# I_q: query frame
# I_r: reference frames
# Y_r: reference masks of I_r
# R: number of round for recurrent refinement
# N: number of reference frames

def visual encoder(I):
res4, res3, res2 = BACKBONE(I)
key = MLP(res4)
key = normalize(key)
return key, res4, res3, res2

def mask encoder(I, Y):
res4, _, _ = BACKBONE([I, Y])
value = MLP(res4)
return value

def inference(I_q, I_r, Y_r, R=2):
# NHW x D’
V_r = mask encoder(I_r, Y_r)
# NHW x D
K_r, _, _, _ = visual encoder(I_r)
# HW x D
K_q, res4, res3, res2 = visual encoder(I_q)

#===== compute the affinity (Eq.6) ======#
# NHW x HW
A = mm(K_r, K_q.transpose())
A = softmax(A)

#=== assemble support features (Eq.7) ===#
# HW x D’
V_q = mm(A.transpose(), V_r)

#==== compute the coarse mask (Eq.8) ====#
# HW x 1
Y_q = mm(A.transpose(), Y_r)

#======== recurrent refinement ==========#
for _ in range(R):
#===== predict segmentation (Eq.9) ======#
V_q_overline = mask encoder(I_q, Y_q)
V_q_new = cat([V_q, V_q_overline], dim=0)
Y_q = DECODER(V_q_new, res3, res2)

return Y_q

mm: matrix multiplication; normalize: ℓ2 normalization;
cat: concatenation; softmax: row-wise softmax.
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Method TimeCycle[2] CRW[4] CLTC[8] VFS[5] LIIR[6] Ours
mIoU 28.9 38.6 37.8 39.9 41.2 42.9

Table S1. Quantitative results on VIP[7] test.

Method Training time (Min/Epoch) J&Fm↑
MAST 26.8 65.5

MAST + LSeg 28.7 69.0
CRW 223.8 67.6

CRW + LSeg 239.9 71.8
LCorr + (ours) 5.1 68.8
LCorr + LSeg 5.5 74.5

Table S2. Analysis of training speed on DAVIS17 [9] val.

D. Additional Application Task

We additionally test our model on the task of body part
propagation. Following [2–6], we conduct experiment on
VIP [7] benchmark dataset. It can be seen in Table S1 that
our method achieves the best performance.

E. Additional Qualitative Results

We provide more comparison results on DAVIS17 [9]
val in Fig. S6-S7 and YouTube-VOS [1] val in Fig. S8-
S9, respectively. We can find that our approach suffers less
from error accumulation over time, and yields consistently
better results against other competitors.

F. Training Time

The comparisons of training time are summarized in Ta-
ble S2. All experiments are conducted on one Tesla A100
GPU with ResNet-18 backbone. LSeg is involved in op-
timization after 300 training epochs. It can be seen that our
method brings only slight training speed delay (around 8%),
while offering remarkable performance improvement.

G. Limitation Discussion

Currently we directly leverage the k-means algorithm to
cluster pixels. The k-means clustering, though simple, is less
efficient compared with some more advanced ones, such as
[10, 11] which consider clustering from the perspective of
optimal transport. We leave this as a part of our future work.
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Figure S1. Qualitative analysis of pseudo mask generation and update on YouTube-VOS [1] train. ‘Initial’: masks created right
after correspondence learning; ‘Final’: masks obtained after nine online updates (once per 10 epochs from epoch 300 to 400). The first
row shows the clustering results and the second row gives the pseudo masks derived from the clustering results.
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Figure S2. Qualitative analysis of pseudo mask generation and update on YouTube-VOS [1] train. ‘Initial’: masks created right
after correspondence learning; ‘Final’: masks obtained after nine online updates (once per 10 epochs from epoch 300 to 400). The first
row shows the clustering results and the second row gives the pseudo masks derived from the clustering results.
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Figure S3. Qualitative analysis of pseudo mask generation and update on YouTube-VOS [1] train. ‘Initial’: masks created right
after correspondence learning; ‘Final’: masks obtained after nine online updates (once per 10 epochs from epoch 300 to 400). The first
row shows the clustering results and the second row gives the pseudo masks derived from the clustering results.
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Figure S4. Qualitative analysis of pseudo mask generation and update on YouTube-VOS [1] train. ‘Initial’: masks created right
after correspondence learning; ‘Final’: masks obtained after nine online updates (once per 10 epochs from epoch 300 to 400). The first
row shows the clustering results and the second row gives the pseudo masks derived from the clustering results.
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Figure S5. Qualitative analysis of recurrent refinement on DAVIS17 [9] val and YouTube-VOS [1] val. For Round 0, we directly
leverage Vq (Eq. 7) for mask decoding. For Round 1, the segmentation results (i.e., Ŷq) are produced following Eq. 9. For Round 2, we
replace Y q in Eq. 9 by Ŷq (in Round 1) and subsequently conduct mask decoding to yield refined masks.
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Figure S6. Visual comparison results on DAVIS17 [9] val.
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Figure S7. Visual comparison results on DAVIS17 [9] val.
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Figure S8. Visual comparison results on YouTube-VOS [1] val.
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Figure S9. Visual comparison results on YouTube-VOS [1] val.


