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1. Network  Architecture  

HelixSurf uses  two MLPs to encode the  implicit  signed 

distance field  (SDF-MLP) and implicit radiance field (RF- 

MLP), respectively.  The architecture of  HelixSurf  is il- 

lustrated in Fig. 1.  Notably,  SDF-MLP uses Softplus ( i.e .  

Softplus  (  x  )  =  

1
β  

×  log(1  +  exp(  β  ×  x  ))  )  as  activation 

functions, where β  =  100  . Specifically,  we apply  positional 

encoding γ  (  ·  )  [12] to the input spatial position x as Eq. (1) 

and apply spherical encoding  Sh  (  ·  )  [20]  to the input view 

direction v  .

 

γ  (  x )  =  (sin(20  π x )  ,  cos(20  π x )  ,  ·  ·  ·  ,  sin(2L  −  1  π  x )  ,  cos(2L  −  1  π  x )) (1) 

We set the frequencies  L  in positional encoding  to 6 and set 

the degrees of spherical encoding  to 4.
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Figure 1. Architecture of HelixSurf. HelixSurf takes  the posi-  

tion x  and the view direction v  of the sample point  as inputs, and 

outputs the SDF  and color c  . The surface  normal n  =  ∇  f  (  x  )  .  

2. Handling of Textureless  Surface Areas 

In this work, we treat the  areas  that the MVS predic- 

tions (Fig. 2(a-c)) are less  reliable as  textureless surface ar- 

eas (marked as  white regions in Fig. 2(e)), and leverage the 

homogeneity inside individual  superpixels to handle  these 

areas. In this scheme,  we assume that the  superpixels  can

* indicates equal  contribution. 

† correspondence to Kui Jia <kuijia@scut.edu.cn>.

geometrically partition  textureless surface areas. In fact,  su- 

perpixels  (Fig. 2(f)) not only fall in textureless  areas but  also  

fall in texture-rich areas or  are partially covered  by both ar- 

eas. We thus treat the  superpixels  ( in Fig. 2(h))  that  

are mainly  covered by  textureless  surface areas  as  the tex- 

tureless  superpixels. Moreover, we treat the superpixel  that  

(Fig.  2(h)) whose  smoothness  score (  cf  .  Algorithm  1) over 

0.9 as  a textureless  superpixel ( in Fig. 2(h)) to strengthen  

the regularization. After the identification  of  textureless  sur- 

face areas  by  superpixels, we correspondingly querying  the 

predicted normal map  (Fig. 2(i)) from the learned MLP of  

HelixSurf and denoise the predicted normal with a  sliding  

window manner (Fig. 2(j)). 

The primary  problem is that the  photometric homogene- 

ity inside individual superpixels may  not support the cor- 

rect partition of  textureless  surface areas  at the geometric 

level (  e.g ., in Fig. 2(h) confuses the  corners).  Based on 

the observation that  such superpixels  have  low smoothness 

scores (  cf  .  Algorithm 1), we  thus conduct the  adaptive K- 

means  clustering algorithm (  cf  .  Algorithm 2)  on all tex- 

tureless  superpixels, which adaptively extracts the princi- 

pal  normals for the superpixels. Then, we assign  the  in- 

ternal  pixels  in each textureless superpixels  with their cor- 

responding  principal  normals and obtain the clustered nor- 

mal  map (Fig. 2(k)). We further consider the  consistency  

among multi-view images and conduct mesh-guided con- 

sistency  on clustered normal maps. Finally, the  smooth nor- 

mal  maps (Fig. 2(l)) are used to regularize the learning of 

the  neural implicit  surface learning  in HelixSurf. The over-  

all  textureless  surface areas handling  scheme is illustrated 

in Fig. 2.  

3. Improving the Efficiency by  Establishing 

Dynamic Space Occupancies 

In this work, we devise a  scheme that can adaptively 

guide the point sampling  along rays  by  maintaining  dy- 

namic occupancy grids GOccu 

in the 3D scene space.

For those  textureless surface areas totally  not covered by the  MVS 

predictions, we initialize them with normals generated with Manhattan as- 

sumption [7].
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Figure  2.  The overall textureless surface areas handling scheme.

Algorithm 1 Pseudo code  of  smoothness  scores δ  (  ·  )

Input: normals { n  } for one superpixel A  

Initialize: count =  0 ,  output =  0 , nmean 

=  

1
|{  n  }|  

∑  

n  

1: for n  in { n  } do 

2: if 

n  ·  nmean

|  n  ||  nmean 

|  

>  0 .  9 then 

3: count =  count + 1  

4: end if 

5: end for 

6: output = count /  |{ n  }|  

Return: output

Algorithm 2 Pseudo code  of  adaptive K-means clustering

Input: normals { n  } for one superpixel A  , 

smoothness  threshold τn  

=  0  .  9  ,  

maximum clustering kmax 

=  3 of K-means  

Initialize: k  =  1 ,  output= ∅  

1: while k  ≤  kmax 

do  

2: {{ n  }j  

}k  

j  =1  

=  K-means (  { n  } ,  k  )  

3: if ∀{ δ  (  { n  }j)  >  τn  

}k  

j  =1  

then 

4: for  { nj  

} in {{ n  }j  

}k  

j  =1  

do  

5: nprincipal 

=  

1
|{  nj  

}|  

∑  

nj  

6: push nprincipal 

into output 

7: end for 

8: break 

9: else 

10: k  =  k  + 1  

11: end if 

12: end while  

Return: output

We partition the 3D  scene  space regularly using a  set GOccu 

of occupancy grids of  size 643,  and let  the occupancy of  

any voxel partitioned and indexed by {g ⊂ GOccu 

} be og .

MLP

Maximum

Figure 3. Illustration  of calculating the density  σg  

of grid g  . Note 

that we follow  [16] to model density σ  as an SDF-induced volume  

density.  

During training  of HelixSurf, we update og  

using exponen- 

tial moving  average  (EMA), i.e., oEMA 

g  

← max(  σg  

,  α  (  σg  

−  

oEMA 

g  

)  +  oEMA  

g  

)  ,  where σg  

is the density at  g  given by the 

inducing SDF  function f  and α  =  0 .  05 is a  decaying 

factor. We set  the voxel  indexed by g  as  occupied if 

oEMA 

g  

>  min(0 .  01 ,  mean  (  { og  

}  ))  .  Non-occupied voxels  will  

be skipped  directly  when performing point sampling  along  

each ray, thus improving the  efficiency of  differentiable vol- 

ume rendering used in HelixSurf. 

More specifically, given the grid  g  ⊂  GOccu,  we update  the 

occupancy  og  

of grid  g  using exponential  moving  average 

(EMA), i.e ., oEMA  

g  

←  max(  σg  

,  α  (  σg  

−  oEMA 

g  

)  +  oEMA 

g  

)  ,  where  

σg  

is the density at  g  by the inducing  SDF  function f  and 

α  =  0 .  05 .  To calculate  the density of g  ,  we set  a  point 

set Xg  

=  { xg  

i  

∈  R
3  }9  

i  =1  

that contains the center and 8 

vertices of this  grid. Then, we get the predicted  densities  

Dg  

=  { σ  

g  

i  

∈  R
+  }9  

i  =1  

of  these points  and take  the  maximum 

of Dg  

as  the  density  of grid  σg ,  as  illustrated in Fig. 3.  

4. More  Implementation Details  

In  this  section,  we provide more implementation details 

about the PatchMatch based  multi-view stereo (PM-MVS) 

method, ray  casting technique, textureless  triangle faces  

pruning, and the  experimental settings.
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Figure  4.  The top  views of the  reconstructed  scenes on ScanNet. 

4.1. Multi-View  Stereo  

PM-MVS methods [6,  14, 17, 18, 21] consist of three  

parts: initialization, iterative  sampling  & propagation and 

fusion. The stereo  fusion  algorithm  in COLMAP [14] 

is time-consuming due to its  inefficient  interleaved row- 

/column-wise propagation. To this  end, we  integrate  the 

ACMH [17] in the  HelixSurf. ACMH is  also the basis 

MVS scheme  in ACMP  [18]. On the one hand, AMCH  

is based on a  checkerboard propagation  pattern, which 

achieves higher parallelization. On the  other hand, its  pro- 

posed adaptively sampling scheme makes  the  entire mech- 

anism efficient and reliable. While promising, the  ordinary 

ACMH implementation  spends a  lot  of time on I/O opera- 

tions, and the final fusion  step is  serially implemented. In  

this work, we redesign the I/O operations and implement  

the final fusion  step  via CUDA kernels. 

4.2. Ray Casting 

In this work, we apply  ray  casting to query normal maps  

on the reconstructed mesh. Intuitively, it’s a resource-  

consuming process since hundreds of  thousands  of rays  

need to be cast for each map size of  640 ×  480 .  For effi- 

ciency, we use  NVIDIA OptiX  [13] technique, a  general- 

purpose ray tracing engine that combines  a  programmable 

ray tracing pipeline  with a  lightweight  scene representation. 

This technique enables us to customize  a parallel ray cast- 

ing program and render hundreds  of normal maps in just  

seconds with an NVIDIA RTX  3090 GPU. 

4.3. Textureless  Triangle  Faces  Pruning 

For handling  textureless  surface areas, we utilize  the  in- 

ference results  of the  integrated PM-MVS method  to iden- 

tify textureless  surface areas. Even MVS methods  can ap- 

ply some continuous fitting method  (  e.g ., Poisson recon- 

struction [9, 10]) to recover  a  complete surface ( i.e ., a set 

of triangle faces) from their inference results  (  i.e .,  discrete 

points), they fail to recover  the correct surface of  texture-  

less  areas  due to the lack of inference results  on these areas. 

As  investigated in [8],  the reconstructed  surfaces produce a  

convex hull  or  concave  envelope  results  in points missing 

regions and reconstruct  isolated  components  for noises and 

outliers.  We  thus calculate  the distance  of each triangle  face  

to the  nearest point from the  inference  results, and prune 

the  triangle faces  away from the  inference  results. Then, we 

remove  the  isolated components  whose diameter is smaller  

than a specified  constant. After pruning the textureless  tri-  

angle faces, the  pruned  mesh  is used to handle the  texture-  

less  areas.



 

4.4. More  Experimental  Settings  

For each scene of ScanNet [3],  we uniformly  sample 

one-tenth of views from the  frames of the  corresponding  

video, obtain about 200 ∼  500 images and resize  them  to the 

size of 640 ×  480 resolution.  For Tanks and Temples [11], 

we use all the images from the  provided images set, and re- 

size the images to the  size of  960  ×  540  resolution.  For both 

datasets, we follow  MVSNet [19] to choose the neighbor  

referencing images for each  view. 

5. Evaluation Metrics  

In this work, we use  the following  metrics to evaluate  the 

reconstruction quality: Accuracy , Completeness  ,  Precision , 

Recall , and F-score  . The definitions of these metrics are 

shown in Tab. 1. And  the metrics for evaluating depth and 

normal map are shown in Tab. 2.

 

Metric Definition

 

Accuracy meanp  ∈  P (minp∗  ∈  P  

∗  ‖ p  −  p∗  ‖ )  

Completeness meanp∗  ∈  P  

∗(minp  ∈  P  

‖ p  −  p∗  ‖ )  

Precision meanp  ∈  P (minp∗  ∈  P  

∗  ‖  p  −  p∗  ‖ <  0  .  05)  

Recall meanp∗  ∈  P  

∗(minp  ∈  P  

‖  p  −  p∗  ‖ <  0  .  05)  

F-score 

2  ×  Precision  ×  Recall

 

Precision  +  Recall

 

Table 1. Evaluation  metrics for  reconstruction quality  used in  

this work . P  and P  

∗  are the points  sampled  from the predicted 

and the ground truth  mesh.
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√
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1
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∑
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Median median 

{  

cos−  1[  

|  n  ·  n∗  |

 

|  n  ||  n∗  | ]  

}  

RMSE 

√

 

1

 

n  

∑
(cos−  1[  

|  n  ·  n∗  |

 

|  n  ||  n∗  | ])
2  

Prop_30◦  

1

 

n#  

{  

n  ,  n∗  :  cos−  1[  

|  n  ·  n∗  |

 

|  n  ||  n∗  | ]  <  30◦  

}

 

Table 2. Evaluation metrics for depth  and  normal  map used in  

this work. n  is  the number of pixels  with valid  depth or normal 

in ground truth (GT) depth map or normal map. d  and d∗  are  the 

predicted and GT  depths. n  and n∗  are the predicted and GT  

normals. 

6. Additional Results  

In this section, We  discuss  the effect  caused  by the  super- 

pixel  segmentation. We  also  provide more experimental  re- 

sults for the  ScanNet dataset [3] and Tanks & Temples [11] 

dataset. Further, we conduct  HelixSurf for object-level  and 

real-world scene reconstruction. More  visualization details  

are shown in the attached video. 

6.1. Discussions  on Superpixel Segmentation  

We show  quantitative  results of that  HelixSurf works 

with varying qualities  of  superpixels produced by different 

methods in Tab. 3. The results  verify that HelixSurf works 

stably with these methods.

 

Method

 

SLIC [2]

 

Graph-based  [5]

 

SEEDS [4]

 

F-score ↑

 

0.749

 

0.755

 

0.752

 

Table 3.  Results  with superpixels produced by  different  methods. 

We use  a  graph-based algorithm [5] to produce superpixels.  

We further analyze on varying  superpixels  sizes.  Tab.  4 

shows  that HelixSurf is robust to different sizes of  superpix- 

els. As shown in Fig. 5,  our proposed  adaptive  scheme can  

tackle  low-quality superpixels and produce reliable normals 

in large  textureless surface areas.

 

Size

 

20

 

50

 

100

 

150

 

200

 

F-score ↑

 

0.738

 

0.747

 

0.755

 

0.756

 

0.752

 

Table 4. Results on  different sizes of superpixels.  Size  is  a  hy- 

perparameter in [5] that  controls the sizes of produced  superpixels.  

We  set Size  =  100  in HelixSurf.

(a) size=20 (b) size=50 (c) size=150 (d) Reference

 

Figure 5. Results  of normal maps produced by  different  superpixel 

sizes. The last column presents  the input  image and ground truth 

normal map, and the other  ones present the results. 

6.2. ScanNet 

We show more qualitative results  in Fig. 4  and Fig. 7. 

Compared to the  state-of-the-art learning-based methods, 

HelixSurf produces better  reconstructions. 

6.3. Tanks  and  Temples  

We show  more qualitative  results  on Tanks and Temples  

[11]  in Fig. 8.  Our method can  produce more  precise and 

complete  geometry  than  baseline  methods.



6.4. Object-level Reconstruction 

Although our  HelixSurf is proposed for scene-level re- 

construction, we examine  its  reconstruction  on  an object-  

level dataset (  i.e .  DTU [1])  and report the  result  in Fig. 10. 

As can be seen that  HelixSurf stands  up against baselines. 

6.5. Real-World  Scene  

In order to demonstrate the efficacy of  HelixSurf in the 

real-world capture,  we conduct  HelixSurf  on the real-world 

collected image set (captured by iPhone 11 in [15]). The 

qualitative reconstruction result is  shown  in Fig. 11. 

7. Novel View Synthesis  

In this work, we aim to achieve  an accurate  and com- 

plete reconstruction of  the  target scene.  Furthermore, the 

accurate reconstruction results enable us to realize  high-  

quality novel  view synthesis. For reconstruction, we uni- 

formly sample  one-tenth  of views from the  target scene in 

ScanNet [3]. For the novel view synthesis, we randomly 

select some views  from the remaining  nine-tenths  of  views 

and conduct rendering. The rendering  results are shown  in 

Fig. 9. 

8. Failure Cases 

In this work, we assume that textureless  surface areas 

tend to be both homogeneous in color and geometrically 

smooth. Once  the textureless  surface areas in the  scene do 

not satisfy this  assumption, HelixSurf may  fail to handle 

these areas. For the  textureless surface areas with signifi-  

cant curvature as  shown  in Fig. 6, HelixSurf may  fail to han- 

dle these textureless surface areas by the normal smoothing 

scheme and suffer from the  artifacts in the reconstruction  

results. These problems can be solved  by adopting  some ge- 

ometric assumptions  about  the  curved surface. However,  it  

will undoubtedly increase the complexity of the  whole sys-  

tem. An interesting future work is  to introduce more flexible 

and generalized assumptions  to tackle  the corner cases. 
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Figure  7. The zoom-in  views of the reconstructed  scenes  on  ScanNet.
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Figure 8. Qualitative  Comparison  on  Tanks  and Temples.



 

Figure 9. Novel view synthesis results on ScanNet. For each  block, the first  row is the reference  images  and the second row is  the novel 

view synthesis  results.
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Figure  10. Qualitative  Comparison  on  DTU.



(a) The top view  of the  entire reconstructed  indoor scene. (b) The  first block is a set of reference images. The second block is  the  corre- 

sponding reconstruction results.  Surface normals are visualized as  coded colors. 

Figure  11. Reconstruction of the  real-world  capture.


