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Figure 1. Crop without mask will introduce background pixels,
making the prediction more difficult.

A. Crop with or without mask
In the paper, we use the default crop with mask (see left

of Figure 1). We also try the direct crop without mask
(see right of Figure 1). Following the bottleneck analy-
sis in the introduction, we feed the unmasked crops a pre-
trained CLIP for classification. This experiment gives a
13.8% mIoU, which is -6.3% worse than using the masked
crops. We hypothesize that the crop with mask introduces
many background pixels, making the prediction more diffi-
cult. For the example in the right of Figure 1, the “orange”
will also be an appropriate category for the unmasked crop.

We note that ZegFormer [2] has also done an ablation
study about different strategies to obtain the final crop. We
reach a similar conclusion.

B. Text templates
We use the text templates from ViLD [3]. For each cat-

egory, we used multiple templates to generate the text em-
beddings then ensemble these embeddings by a simple av-
erage. Text templates are shown as below:

’a photo of a {}.’,
’This is a photo of a {}’,
’There is a {} in the scene’,

*Work done during an internship at Meta Reality Labs.
†Work done while at Meta Reality Labs.

Table 1. The effects of class prediction ensemble. The baseline
and our OVSeg model are Swin-Base + Vit-L. We report the mIoU
on A-150.

MaskFormer only CLIP only Ensemble

baseline 19.6 14.3 21.8
OVSeg (Ours) 19.6 25.1 29.6

’There is the {} in the scene’,
’a photo of a {} in the scene’,
’a photo of a small {}.’,
’a photo of a medium {}.’,
’a photo of a large {}.’,
’This is a photo of a small {}.’,
’This is a photo of a medium {}.’,
’This is a photo of a large {}.’,
’There is a small {} in the scene.’,
’There is a medium {} in the scene.’,
’There is a large {} in the scene.’,

C. Class prediction ensemble weight
We set λ = 0.7 for A-150 and A-847, λ = 0.6 for PAS-

20, PC-59 and PC-459. We further detail the effects of en-
semble on A-150 in Table. 1. MaskFormer only or CLIP
only denotes the use of the class prediction of MaskFormer
or CLIP only. Compared with the baseline, we adapt the
CLIP to masked images, leading to a much better CLIP only
performance. We also notice ensemble is essential for good
performance.

D. Training hyperparams of R101c model
Our small model is MaskFormer R101c with CLIP ViT-

B/16. For MaskFormer training, the backbone weights are
initialized from an ImageNet-1K pre-trained model. We use
AdamW optimizer with the poly learning rate schedule. The
initial learning rate and weight decay are set to 2 · 10−4 and
10−4, respectively. We also use a learning rate multiplier



Table 2. Ablation on combining mask prompt tuning (MPT) and
fine-tuning (FT). FT ->MPT indicates first FT and then MPT, and
vice versa. FT + MPT sim. means optimizing prompts and CLIP
simultaneously.

combination A-847 A-150

FT ->MPT (default) 9.0 29.6
MPT ->FT 8.5 (-0.5) 28.1 (-1.5)
FT + MPT sim. 8.8 (-0.2) 29.0 (-0.6)

Table 3. Ablation on prompt depth. We test with and without fully
fine-tuned (FT) model.

prompt depth A-150

w/o FT w/ FT

1 25.7 29.3
3 (default) 26.5 29.6
6 26.8 29.4
12 26.8 29.3

0.1 on the backbone. We use a crop size of 512 × 512,
a batch size of 32 and train the model for 120K iterations.
For data augmentations and other hyper-parameters, we fol-
low the setting of [1]. For adapting CLIP ViT-B/16 model,
we basically follow the hyperparameters of finetuning ViT-
L/16 except we use a larger batch size 1024.

E. More ablation studies on mask prompt tun-
ing

We explore two other ways to combine mask prompt tun-
ing (MPT) and fine-tuning (FT) as in Table 2. Our default
setting (FT ->MPT) is first doing FT and then applying
MPT to the already fine-tuned model. We don’t change the
weights of fine-tuned CLIP. The other option is first doing
MPT and then doing FT with fixed mask prompts (MPT -
>FT). This combination produces poor results (-1.5% drop
on A-150). We conjecture mask prompts learned with orig-
inal CLIP provide a bad prior when we fune-tune the entire
CLIP model. We also explore learning mask prompts and
fine-tune CLIP weight simultaneously (FT + MPT sim.).
This doesn’t bring favorable results either.

We further ablate the effects of prompt depth in Table 3.
The depth can be selected from {1, 3, 6, 12}. We use two
different scenarios: without fine-tuning (w/o FT) for mask
prompt tuning only, with fine-tuning (w/ FT) for applying
mask prompt tuning over a already fine-tuned model. For
w/o FT case, one layer prompt can bring significant im-
provement, e.g., from baseline’s 21.8% to 25.7%. Deeper
prompts result in better performance, because more parame-

Table 4. Comparison between different prompt tuning methods.

Method baseline MPT (ours) VPT

mIoU on A-150 21.8 26.5 25.5

Table 5. The source of mask-category training pairs.

Training pairs Stuff Cap. Stuff + Cap.

mIoU on A-150 23.0 28.8 26.7

ters are introduced with more prompts. Interestingly, deeper
prompts (going from 3 to 12) don’t bring further improve-
ment for w/ FT case. We choose prompt depth as 3 for
default setting.

F. Compare masked prompt tuning (MPT) to
Deep Visual Prompt Tuning (VPT) [4]

We compared our MPT to VPT [4]. With the Swin-Base
+ ViT-L/14 baseline, we added 50 learnable tokens to the
image input tokens. VPT used ”deep prompts” with depth
6, resulting in 25.5% mIoU on A-150, which is 1.0% worse
than MPT (case (a) in Table 3). This could be due to the
use of masked prompts in MPT, which prevent zero masked
tokens and mitigate domain distribution shifts in the CLIP
model. Additionally, MPT requires no additional computa-
tion, while VPT requires 40% more computation to process
the extra tokens. We plan to include this ablation study in
our final draft.

G. Combine training pairs from COCO-stuff
and COCO-Caption pseudo segments.

We combined GT COCO-stuff annotations (case (1) in
Tab.2) with caption pseudo-labeled annotations (case (3)
in Tab.2), resulting in 1.4M pairs with 12K nouns in Ta-
ble 5. However it underperformed compared to using only
pseudo-labeled annotations (26.7% mIoU vs. 28.8% mIoU
on A-150). We believe the class distribution was dominated
by the GT COCO-stuff annotations and resulted in overfit-
ting. Future work could explore a more balanced data se-
lection (e.g. 10% GT + 90% pseudo-labeled annotations) to
potentially improve performance.

H. Class-wise IoU over seen and unseen cate-
gories.

We detail the class IoU on all 150 categories in
ADE20K-150 (model trained on COCO) in Figure 2, and
we annotated seen vs. unseen classes and their IoUs. Seen
categories mean there are similar categories in COCO-stuff
training set. Unseen categories denote the novel categories



in ADE20K. The average IoU of seen and unseen categories
are 37.6% and 21.9%, respectively, showing that our model
performs better on seen categories. This is also observed in
other open vocabulary segmentation work, such as [2].
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Figure 2. Class IoU on all 150 categories in ADE20K (model
trained on COCO). It is expected the model performs better on
seen categories in training set.

I. Inference speed discussions
We followed the two-stage framework of SimBase-

line [5] with a focus on accuracy improvement. Our study
also evaluated the inference time of MaskFormer and CLIP
region classification. For our OVSeg model (Swin-Base
+ ViT-L), the inference time of MaskFormer and CLIP
is roughly 0.2s and 0.6s, respectively, per image on an
NVIDIA A5000 GPU. We acknowledge that processing
hundreds of regions with CLIP is time-intensive and under-
stand that improving the efficiency of two-stage frameworks
is a crucial area of research. It is out of the scope of this
work and we plan to address this challenge in future work.
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