
1. Experimental Setup

1.1. Implementation Details

Here we further provide detailed experimental settings
in our paper. Class numbers for object detection, semantic
segmentation, drivable area segmentation, and lane detec-
tion are 9, 19, 2, and 1 respectively. We remove the train
class as in [12] for object detection. For lane detection, we
follow [5] to preprocess lane line annotations. Loss weights
for object detection, semantic segmentation, drivable area
segmentation, and lane detection are fixed as 1, 2, 2, and 2
respectively. All experiments are conducted on servers with
8 Nvidia V100 GPUs and Intel Xeon Platinum 8168 CPU
(2.70GHz).

1.2. More Details on Dataset

BDD100k dataset [14] contains multiple tasks. Here
we focus on object detection (OD), semantic segmentation
(SS), drivable area segmentation (DA), and lane detection
(LD). In BDD100K, 70k training images are labeled for ob-
ject detection, drivable area segmentation, and lane detec-
tion, and only 7k training images are labeled for semantic
segmentation.

2. More Investigations

In this section, we present more analyses of popular
multi-task learning methods.

2.1. Task Scheduling

Here we analyze task scheduling methods on disjoint-
balance settings, whose results are shown in Table 1 in the
main paper. Note that the full setting contains almost com-
plete annotations except semantic segmentation, thus it is
not suitable for task scheduling. Since the data of all tasks in
the disjoint-balance setting is balanced and non-overlapped,
Uniform sampler [9] and Weighted sampler [9] are equiva-
lent. As shown in Table 1 in the main paper, task sampling
methods (i.e., Uniform sampler [9] and Round-robin [9])
perform better than Zeroing loss [13] by a large margin
on segmentation-based tasks, but get worse in object de-
tection. We hypothesize that negative transfer still exists
among these approaches, and training one task per step may
lead to forgetting to some extent.

2.2. Partial-label Learning

As shown in Table 1 in the main paper, pseudo label-
ing [3] surpasses Zeroing loss [13] on almost all tasks, es-
pecially on semantic segmentation. However, the improve-
ment in drivable area segmentation and lane detection under
the full setting is not obvious, since there are less unlabeled
data on these tasks.
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Figure 1. We provide the loss changes of all tasks during training
under the disjoint-balance setting. From the curve, we find out that
our VE-Prompt can achieve faster and better convergence.

2.3. Task Balancing

We choose pseudo labeling as the baseline since task-
balancing methods are more suitable in settings with com-
plete labels. Fixed denotes fixed loss weights for all tasks
during training. As shown in Table 2 in the main paper, Un-
certainty [6] performs better than Fixed [3] under the full
settings overall, while the performance of GradNorm [1] de-
grades significantly. Interestingly, Fixed performs slightly
better than Uncertainty under the disjoint-balance setting,
which indicates that Uncertainty is not suitable for all data
split settings. GradNorm and MGDA [11] perform poorly
overall, showing that these task-balancing methods are not
suitable for autonomous driving. Especially, GradNorm
uses the last shared layer of weights to compute gradient
norm in its paper, thus we adopt the last layer of P5 in the
neck. We also choose the whole shared encoder to imple-
ment GradNorm, which is denoted as GradNorm∗, improv-
ing the original one by a large margin under the disjoint-
balance setting (+10.8 in Avg.). This indicates that the
selection of network weights for computing GradNorm is
important. Interestingly, MGDA consistently achieves the
best result on lane detection, indicating that it suffers from
the heavy negative transfer. Since it takes a long time to
train MGDA, we did not implement it under the full setting
for the time limit.

In summary, most existing multi-task learning methods
suffer from poor performances under the real-world scenar-
ios of autonomous driving since they are not designed to
handle unified perception in self-driving. Therefore, it is
extremely important and urgent to develop applicable multi-
task methods for autonomous driving.



Table 1. Compare with LV-Adapter under the disjoint-balance setting.

Method mAP AP50 AP75 mIoU (SS) mIoU (DA) IoU (LD) GFLOPs Params

LV-Adapter [8] 24.6 47.4 21.9 61.8 80.6 - 415 200M
VE-Prompt (Ours) 26.8 51.2 23.8 58.3 86.8 22.1 401 60M

Table 2. Comparison of fixed and trainable task-specific prompts under the disjoint-balance setting.

Fixed mAP AP50 AP75 mIoU (SS) mIoU (DA) IoU (LD)

✓ 33.3 55.3 32.5 61.1 87.2 22.1
✗ 33.9 56.6 33.7 61.2 87.4 22.2

3. Compare with LV-Adapter
We conduct experiments to compare with recent LV-

Adapter [8], which tackles three tasks, as in Table 1. The
class number of object detection is 10 in LV-Adapter, and
the backbone is Res50 [4]. Here we use the same setting
as in LV-Adapter, and present results under the disjoint-
balance setting in Table 1. Note that data splits of object de-
tection, semantic segmentation, and drivable area segmen-
tation are the same as in LV-Adapter. Results show that our
proposed VE-Prompt performs better than LV-Adapter on
object detection and semantic segmentation by a large mar-
gin (+2.2 in mAP and +6.2 in mIoU (DA)). Meanwhile,
our method gets competitive results in lane detection com-
pared with the Swin-Tiny [10] backbone as in Table 3 in the
main paper. LV-Adapter adopts MaskFormer [2], which is
a stronger baseline, to generate pseudo labels for semantic
segmentation, while VE-Prompt chooses Semantic FPN [7]
as the teacher model. Therefore, the improvement of se-
mantic segmentation for LV-Adapter may come from high-
quality pseudo labels. The number of parameters in the
proposed VE-Prompt is much less than that of LV-Adapter
as in Table 1. We also report GFLOPs on the same V100
NVIDIA GPU for a fair comparison. Results show that our
method is more efficient and effective overall.

4. More Ablation Studies
4.1. Influence of Fixed Prompts

The task-specific prompts are not fixed during training
in VE-Prompt. We also conduct experiments to verify the
effectiveness of trainable task-specific prompts as in Table
2. Results show that the model with trainable task-specific
prompts performs better on all four tasks.

4.2. Number of Exemplars

Here we compare different configurations of the number
of visual exemplars. The number of visual exemplars for
different tasks is n1, n2, n3, and n4. We keep them equal for
simplification. As shown in Figure 2, the model performs

better when n1 = n2 = n3 = n5 = 5, thus we set the
number of visual exemplars as 5 in our final model.

4.3. Loss Analysis

We also analyze the loss changes of VE-Prompt and the
baseline under the disjoint-balance setting as in Figure 1.
From the loss curves, we conclude that our VE-Prompt
achieves consistent faster and better convergence during
training. Note that loss weights for all tasks in Fixed and
VE-Prompt here are set as 1 for a fair comparison.

4.4. Comparisons with Alternative Options

We present the results of VE-Prompt with some alterna-
tive options as in Table 3. Results show that VE-Prompt
with Uncertainty can improve Uncertainty on all tasks, and
VE-Prompt with Fixed performs better than VE-Prompt
with Uncertainty.

Table 3. Results of VE-Prompt with alternative options under the
disjoint-balance setting.

Model mAP mIoU (SS) mIoU (DA) IoU (LD) ∆MTL(%)

Uncertainty 31.2 59.9 87.0 22.2 +1.66
VE-Prompt (Uncertainty) 32.9 60.6 87.9 22.5 +4.04

Fixed 31.3 60.2 87.0 22.2 +1.87
VE-Prompt (Fixed) 33.9 61.2 87.4 22.2 +4.72

5. Experiments on NuImages Dataset

We also conduct experiments on nuImages dataset1,
which covers two tasks, object detection and semantic seg-
mentation. Results are shown in Table 4, indicating that
VE-Prompt performs much better than baselines.
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Figure 2. Ablation study of different numbers of visual exemplars under the disjoint-balance setting. The x-axis represents the number of
visual exemplars, and the y-axis indicates mAP or mIoU.
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