
A. Experiment Configurations
Datasets. We perform experiments on three popu-

lar vision datasets (CIFAR-10 [17], Fashion-MNIST [35]
and SVHN [26]), and a natural language dataset (Shake-
speare [6]). We use the standard train/test split on these
datasets and report accuracy on test dataset with a global
model on server-side. To simulate different data heterogene-
ity levels, for CV tasks we split the datasets by class label
with the distribution Dir|C|(↵) [14,32], and adjust the ↵ con-
stant for varying the degree of data heterogeneity. We chose
↵ = 0.5 unless specified for all experiments. We employ
simple data augmentation for the training images, including
random crop and normalization, and an extra random flip
for CIFAR-10. For the Shakespeare NLP dataset, we follow
LEAF [6] for next-character prediction, which assumes each
role in each play to be an individual client. The resulting
splits are thus inherently heterogeneous since each local
client only contains the corresponding roles sentences.

Models. All models listed for computer vision (CV)
tasks (i.e., Fashion-MNIST, SVHN, CIFAR-10) are standard
CNNs equipped with channel dropouts, and Tables 6 to 8
respectively show their layer configurations.

Competing sparse FL methods. In our experiments, we
compare Flado against SOTA sparse FL methods, namely
HeteroFL [9], FjORD [13] and eFD (an extension of fed-
erated dropout [5] by [13]). As we employ FLOPs budget
constraints, we define

pc = inf
p
{gc(rc, p) � 0}, (6)

i.e., the shared density of all layers in the client c that satis-
fies the FLOPs budget. The implementation details of the
methods are as follows:

• FjORD samples a pc,k from a conditional distribution
of model widths Dp|Dp  pcmax for each client c at the
kth local training step. Here, pcmax denotes the maxi-
mum permissible model for the client. Following [13],
we let Dp be a uniform distribution U [p, p], where
(p, p) = (minc2C pc,maxc2C pc). To further ensure
clients respect their respective FLOPs budgets, we let
pcmax = infp{Eq⇠U [p,p][gc(rc, q)] � 0}.

• eFD samples sub-model for each client in each training
round. Following the definition of eFD in [13], at the
start of each round, for each client c 2 C we choose
to enable and transmit its neurons with a shared prob-
ability pc. This reduces the full model to a sub-model
satisfying the rc FLOPs budget.

• HeteroFL selects the first dpcC [l]e channels of each
layer l for each client c to form a pc-reduced sub-model,
where C [l] denotes the number of channels in layer
l. The clients then train the derived sub-models for a
round.

Table 6. Layout of the model used for Fashion-MNIST training.

Layer Kernel Stride Feature shape #Params #FLOPs

1 Conv+ReLU 5⇥ 5 1 32⇥ 28⇥ 28 832 652 k
2 Max Pool 2⇥ 2 2 32⇥ 14⇥ 14 — 25.1 k
3 Conv+ReLU 5⇥ 5 1 64⇥ 14⇥ 14 51.3 k 10.0 M
4 Max Pool 2⇥ 2 2 64⇥ 7⇥ 7 — 125 k
5 Conv+ReLU 3⇥ 3 1 64⇥ 5⇥ 5 36.9 k 923 k
6 Avg Pool 2⇥ 2 1 64⇥ 2⇥ 2 — 1.6 k
7 FC — — 512 132 k 132 k
8 FC — — 10 5.13 k 5.13 k

Total 226 k 11.8 M

Table 7. Layout of the model used for SVHN training.

Layer Kernel Stride Feature shape #Params #FLOPs

1 Conv+ReLU 5⇥ 5 1 32⇥ 28⇥ 28 2.43 k 1.91 M
2 Max Pool 2⇥ 2 2 32⇥ 14⇥ 14 — 25.1 k
3 Conv+ReLU 5⇥ 5 1 64⇥ 10⇥ 10 51.3 k 5.13 M
4 Max Pool 2⇥ 2 2 64⇥ 5⇥ 5 — 6.4 k
5 Conv+ReLU 3⇥ 3 1 64⇥ 3⇥ 3 36.9 k 333 k
6 Avg Pool 2⇥ 2 1 64⇥ 2⇥ 2 — 576
7 FC — — 512 132 k 132 k
8 FC — — 10 5.13 k 5.13 k

Total 227 k 7.54 M

Table 8. Layout of the VGG-9 model used for CIFAR-10 training.

Layer Kernel Stride Feature shape #Params #FLOPs

1 Conv+ReLU 3⇥ 3 1 32⇥ 32⇥ 32 896 918 k
2 Conv+ReLU 3⇥ 3 1 64⇥ 32⇥ 32 18.5 k 18.9 M
3 Max Pool 2⇥ 2 2 64⇥ 16⇥ 16 — 65.5 k
4 Conv+ReLU 3⇥ 3 1 128⇥ 16⇥ 16 73.9 k 18.9 M
5 Conv+ReLU 3⇥ 3 1 128⇥ 16⇥ 16 148 k 37.8 M
6 Max Pool 2⇥ 2 2 128⇥ 8⇥ 8 — 32.8 k
7 Conv+ReLU 3⇥ 3 1 256⇥ 8⇥ 8 295 k 18.9 M
8 Conv+ReLU 3⇥ 3 1 256⇥ 8⇥ 8 590 k 37.8 M
9 Avg Pool 8⇥ 8 — 256⇥ 1⇥ 1 — 16.4 k

10 FC — — 512 132 k 132 k
11 FC — — 512 263 k 263 k
12 FC — — 10 5.13 k 5.13 k

Total 1.53 M 134 M

After each round of training, the parameters of each neuron
are aggregated over clients that updated this neuron in the
current training round. Namely, for each channel neuron n,
we perform the following aggregation for its parameters ✓n:

✓n =
P

c2trained(n)

�c

�
✓n
c , (7)

where � =
P

c2trained(n) �c, and the function trained(n)
returns the set of clients that trained neuron n in the current
round. This process is identical to the ones employed in both
FjORD [13] and HeteroFL [9].

B. Computing the Number of FLOPs
In the lth sparse layer (denoted by ĥ[l]), the expected

number of FLOPs per image per step is the sum of the FLOPs

required by both the convolution and ReLU activation:

flops(ĥ[l]) = 2(Ĉ [l]Ĉ [l�1]K [l]2H [l]W [l] + Ĉ [l]H [l]W [l]),
(8)

where K [l]2 is the 2-dimensional kernel size, and H [l]⇥W [l]

is the output feature map size. Moreover, Ĉ [l�1] and Ĉ [l] are
the number of active input and output channels respectively;
we assume Ĉ [l], i.e., the average number of remaining out-
put channels for layer l, to be C [l] mean

�
p

[l]
c

�
, and mean(z)

computes the mean of elements in z and C [l] is the number
of total output channels of layer l.

To generalize, we can rewrite the total number of FLOPs
required by the overall sparse model ĥ with L layers to be:

flops(ĥ,pc) = 2
PL

l=1C
[l] mean

�
p

[l]
c

�
(9)

�
K [l]2C [l�1] mean

�
p

[l�1]
c

�
+ 1

�
H [l]W [l],

and assume p
[0]
c = 1 and p

[L]
c = 1, since both the input and

output of the model must be dense. Finally, by evaluating
flops(ĥ,1), we can get the number of FLOPs consumed by
the fully dense model.

C. Fast Johnson-Lindenstrauss Transform
Lemma C.1 (The FJLT Lemma [1]). Given a set X =
{x1,x2, . . . ,xn} of n vectors in Rd, and let � = PHD ⇠
FJLT(n, d, k, q, ✏) be the sampled FJLT transform. Here,

• P is a k ⇥ d sparse matrix, where its entries pij ⇠
N (0, q�1) with probability q, and pij = 0 otherwise.
We let q = min{⇥(1/d log2 n), 1}.

• H is a d⇥ d Hadamard matrix.

• D is a diagonal matrix entries drawn from {�1, 1}
uniformly.

With high probability (> 2/3), the following events hold:

• For all xi 2 X,

(1� ✏)kkxik2  k�xik2  (1 + ✏)kkxik2. (10)

• The projection � : Rm ! Rk requires O(d log d +
min{d✏�2 log n, ✏�2 log3 n}) operations.

It is easy to prove that a tight bound hold for cosine-
similarity with high probability.

Lemma C.2 (The FJLT lemma adapted for cosine similarity).
With the same assumptions in Lemma C.1, we have

1�✏
1+✏ cossim(xi,xj)  cossim(�xi,�xj), and

cossim(�xi,�xj)  1+✏
1�✏ cossim(xi,xj).

(11)

Proof. We begin with the cosine similarity of the FJLT of
both vectors xi and xj :

cossim(�xi,�xj)

=
D

�xi
k�xik2

, �xj

k�xjk2

E

= 1� 1
2

��� �xi
k�xik2

� �xj

k�xjk2

���
2

2
.

Applying (10) of Lemma C.1 on the norms in the denomina-
tors, using interval arithmetic:

2 1� 1
2

���� 1
(1±✏)k

⇣
xi

kxik2
� xj

kxjk2

⌘���
2

2
,

and also on the outer norm, we have:

✓ 1� 1
2 (1± ✏)2k2

��� 1
(1±✏)k

⇣
xi

kxik2
� xj

kxjk2

⌘���
2

2
,

= 1� 1
2

⇣
1+✏
1�✏

⌘±1��� xi
kxik2

� xj

kxjk2

���
2

2

= 1� 1
2

⇣
1+✏
1�✏

⌘±1
(2� 2 cossim(xi,xj))

✓
⇣

1+✏
1�✏

⌘±1
cossim(xi,xj).

In each training round, we sample the same FJLT matri-
ces from FJLT(n[l], d[l], k[l], q[l], ✏) that are shared across all
clients. One can simply use the current round number as the
shared random seed to guarantee identical sampling. We let
d be the number of clients, set k = O(✏�2 log n) and finally
fix q according to Lemma C.1. For example, for ✏  0.02,
which provides a good trade-off between the size of projected
embeddings and the approximation bounds, satisfying this
bound, would require k = 4/(✏2/2 � ✏3/3) log n [8]. For
CIFAR-10 with 20 clients, this evaluates to 60, 724 values
after performing the FJLT on the full model parameters.

In practice, the observed error bound is much smaller
than the theoretical bounds, and we can thus afford to re-
duce k further. Figure 7 provides the empirical error bounds
E = kcossim(J(a), J(b))� cossim(a,b)k1 between the
approximated cosine similarity (CS) of FJLT randomly-
projected vectors and the true CS before projection, where
a = �✓(t) and b = r✓(t)`c

�
bc � ✓(t)

�
. We gather the re-

sults after the first round of training 20 CIFAR-10 clients,
following our default data and system heterogeneity settings.
Here, we vary the size of k to trade off the size of the pro-
jected embeddings and the error bounds E on CS approxima-
tion. We highlight that empirically, a small k still preserves
the CS after approximation very well. This means a very
small amount of additional communicated parameters for
each client downloads before its training round is necessary
for an accurate representation of the model update trajecto-
ries. We thus chose k = d M

103 e, where M is the number of

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·1016

0

100

200

300

400

500

600

700

800

Computation (#FLOPs)

C
o
m

m
u
n
ic

a
ti

o
n

R
o
u
n
d
s

Flado

UniProb

eFD

FjORD

Figure 6. Comparing the FLOPs vs. communicated parameters
trade-off across different FL methods reaching a target accuracy
under both data and system heterogeneity. For detailed explana-
tions, see the caption of Figure 5.

102 103 104 105 106
10�4

10�3

10�2

10�1

FJLT embedding dimension k

Em
pi

ric
al

er
ro

rb
ou

nd
s

on
co

si
ne

si
m

ila
rit

y

Figure 7. The maximum empirical error bounds on the approxima-
tion of cosine similarity values for 20 clients trained on CIFAR-10
under the default system and data heterogeneity. We repeat the
experiments 10 times with different seeds for statistical bounds.

model parameters. This translates to only requiring an addi-
tional < 0.1% downloaded parameters per round for each
client. Under this setting, the number of FLOPs required for
computing FJTL transform is 22.5M additional FLOPs for
every 1% of all local steps (or < 0.02% additional FLOPs
by a client per round).

D. Additional Results
In addition to Figure 5 which compares the FLOPs-

parameters trade-off Pareto frontiers, we also include a com-
parison on the numbers of FLOPs vs. communication rounds
in Figure 6.

Figure 8 provides ablation and sensitivity analyses of
Flado. Here, we adjust the proportion of local updates used
to adapt channel selection probabilities. We find that 1% is

100 200 300 400 500 600 700 800 9001,000
40

50

60

70

80

90

Communication (#Rounds)

A
cc

ur
ac

y
(%

)

0%

0.1%

1%

10%

Figure 8. Ablation and sensitivity analyses of the proportion of
local steps used to optimize channel selection probabilities on
CIFAR-10. Here, 0% corresponds to no optimizations. We found
1% is typically the optimal proportion.

typically the optimal proportion, and this is used throughout
our experiments. Note that with 0%, it disables the probabil-
ity optimization process.

	. Introduction
	. Related Work
	. The Flado Method
	. Preliminaries and Definitions
	. Sparsity Enforcement
	. Sparsity-driven Trajectory Alignment
	. The Overall Algorithm

	. Evaluation of Sparse FL Algorithms
	. Experiment Setup
	. Main Evaluation
	. Elasticity under Heterogeneity
	. Scalability Experiments

	. Conclusion
	. Experiment Configurations
	. Computing the Number of FLOPs
	. Fast Johnson-Lindenstrauss Transform
	. Additional Results

