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A. Search Space
Similar to [5], the search space defined in this work is

shown in Fig. A. And the optional operations in each block
are listed in Table A.

Table A. Network operation coding space

Operation Type Kernel
Size

Shot
Name Code

Identity mapping − Identity 0
Average pooling 3 AVG 1

Max pooling 3 MAX 2
Depthwise Separable Convolution 3 DW3 3
Depthwise Separable Convolution 5 DW5 4
Depthwise Separable Convolution 7 DW7 5

Dilated Convolution 3 DC3 6
Dilated Convolution 5 DC5 7
Dilated Convolution 7 DC7 8

B. Pseudo code

Algorithm 1 The pseudo code of EMT-NAS
Input: The number of tasks N , population size of each task K, maximum number

of generations T , training dataset Dtrain =
{
D1

train, ..., D
N
train

}
and

validation dataset Dvalid =
{
D1

valid, ..., D
N
valid

}
Output: The best network architecture for each task
1: t = 1
2: P1 ← Generate an initial population with N ∗K and assign the same τ to each

individual on the same task by Algorithm 2
3: P2 ← Train individuals of P1 on Dtrain by Algorithm 3
4: Evaluate the fitness of trained individuals in P2 on Dvalid by Algorithm 4
5: while t < T do
6: t = t + 1;
7: Generate offspring population Ot and assign the skill factor τ of each off-

spring by Algorithm 5
8: Pt, Ot ← Train individuals of Pt and Ot on Dtrain by Algorithm 3
9: Evaluate the fitness of trained individuals in Ot on Dvalid by Algorithm 4

10: Rt = Pt ∪Ot

11: Pt+1 ← Select top K individuals of every task from Rt;
12: (Pbest)t ← In Pt+1, the individuals with the highest fitness in each task

are evaluated on the validation dataset for the corresponding task
13: end while
14: Output the best individuals in Pbest of each task and decode them into the

corresponding network architecture

*Corresponding author.

The pseudo code of EMT-NAS is given in Algo-
rithm 1. The inputs of the algorithm include the num-
ber of tasks N , the population size of each task K, the
maximum number of generations T , the training dataset
Dtrain =

{
D1

train, ..., D
N
train

}
(a collection of training

sets for all tasks) and the validation dataset Dvalid ={
D1

valid, ..., D
N
valid

}
(a collection of validation sets for all

tasks). The algorithm starts with population initialization
(Line 2), in which K individuals (network architectures) are
randomly generated for each task together with a skill factor
τ predefined for each task, referring to Algorithm 2. Then,
sampled training of the parents is performed to update the
weights of the individuals on the data of the corresponding
task using Algorithm 3 (Line 3). As stated above, in the
sampled training, an individual having the corresponding
skill factor in the population is randomly chosen for each
mini-batch of the data to reduce the training time. After
training, sampled evaluating is carried out for each individ-
ual that evaluates its fitness (classification accuracy) on one
mini-batch of the validation data of the corresponding task
indicated by its skill factor, referring to Algorithm 4 (Line
4). Next, two individuals are selected from the parent pop-
ulation to generate two offspring by means of crossover or
mutation at a probability (Line 7). Details of the crossover
and mutation operators are given in Algorithm 5. Then,
sampled training of the individuals in the parent and off-
spring populations are trained on the training data of their
corresponding task, referring to Algorithm 3 (Line 8), fol-
lowed by sampled evaluating of the individuals in the off-
spring population on the validation data of the correspond-
ing task, referring to Algorithm 4 (Line 9). Then, environ-
mental selection is conducted to select the top K individu-
als for each task as the parents of the next generation from a
combination of parent and offspring individuals by sorting
the individuals in an descending order (Line 11). Then, in
the parent population of the next generation, the individual
with the highest fitness in each task is evaluated on the val-



Figure A. Overview of the search space. (a) The search space consists of a convolution layer, two types of searchable cells and a fully
connected layer. Normal cell can be stacked R times, reduction cell only once. Each cell consists of two inputs (the output and input of
the previous block respectively), five blocks, and one output. And each block has two inputs that are separately connected to the operation,
which adds up to one output, as shown in (b). Hence, each block code has four integer bits. The cell code consists of five blocks, and its
corresponding cell structure is shown in (c) and (d), respectively.

idation dataset for the corresponding task as a candidate for
the best individual under that task (Line 12). The steps from
Line 6 to Line 12 are repeated for T − 1 generations before
the best individual (network architecture) for each task is
outputted (Line 14).

Algorithm 2 Population Initialization
Input: Number of tasks N , population size of each task K, operation space S, and

position space X
Output: Initial population P1

1: P1 = {}
2: for n← 1 to N do
3: τ = n
4: for k ← 1 to K do
5: individual = {}
6: for e← 1 to 2 do
7: cellcode = {}
8: for h← 1 to 5 do
9: blockcode = {}

10: x1, x2 ← Randomly select two positions in X
11: s1, s2 ← Randomly select two operations in S
12: blockcode← s1, s2 ∪ x1, x2

13: cellcode← cellcode ∪ blockcode
14: end for
15: individual = individual ∪ cellcode
16: end for
17: P1 ← P1 ∪ (individual ∪ τ)
18: end for
19: end for
20: Output population P1

C. Hyperparameter Settings
C.1. MedMNIST

MedMNIST [4] is a collection of 10 pre-processed
medical datasets, including X-ray, OCT, ultrasound, com-

Algorithm 3 Sampled Training
Input: Number of tasks N , input population I , training dataset Dtrain ={

D1
train, ..., D

N
train

}
Output: Trained population I
1: According to the skill factor τ , the input population I is divided into N sub-

population of the same task I1, . . . , IN
2: for n← 1 to N do
3: for each batch D in Dn

train do
4: Sample an individual I from In by the binary tournament selection
5: net, ω ← Decode individual I to activate the corresponding network
6: ∇ω ← Compute the gradient
7: ω ← ω − r∇ω
8: end for
9: end for

10: Output the trained population I

Algorithm 4 Sampled Evaluating
Input: Number of tasks N , input population I , current generation t, training dataset

Dvalid =
{
D1

valid, ..., D
N
valid

}
Output: Evaluated population I
1: According to skill factor τ , the input population I is divided into N sub-

population of the same task I1, . . . , IN
2: for n← 1 to N do
3: for each I in In do
4: net, ω ← Decode individual I to activate the corresponding network
5: D ← A batch randomly selected from Dn

valid
6: acc← net (D)
7: if t > 1 then
8: acc← Compute by equation 2 in the main paper
9: end if

10: end for
11: end for
12: Output the evaluated population I

puted tomography (CT), pathological section, and der-
matoscopy, for colorectal cancer, retinal diseases, breast
diseases, and liver tumors. We selected the PathMNIST



Table B. Medical image dataset
Dataset Image Size Data Modality Tasks (Classes) Dtrain Dvalid Dtest

PathMNIST 3×28×28 Pathology Multi-Class(9) 89,996 10,004 7,180
OrganMNIST Axial 1×28×28 Abdominal CT Multi-Class(11) 34,581 6,491 17,778

OragnMNIST Coronal 1×28×28 Abdominal CT Multi-Class(11) 13,000 2,392 8,268
OrganMNIST Sagittal 1×28×28 Abdominal CT Multi-Class(11) 13,940 2,452 8,829

Algorithm 5 Implicit Knowledge Transfer
Input: Parent population Pt, crossover probability of individuals from different

tasks RMP , number of tasks N , and population size of each task K
Output: the offspring population Ot

1: Ot = {}
2: while The number of offspring of each task does not reach K do
3: p1, p2 ← Select two individuals from Pt

4: if τp1 = τp2 or rand < RMP then
5: q1, q2 ← crossover(p1, p2)
6: o1 ← mutate(q1)
7: o2 ← mutate(q2)
8: if rand < 0.5 then
9: (τo1 , τo2 )← (τp1 , τp2 )

10: else
11: (τo1 , τo2 )← (τp2 , τp1 )
12: end if
13: else
14: o1 ← mutate(p1)
15: o2 ← mutate(p2)
16: (τo1 , τo2 )← (τp1 , τp2 )
17: end if
18: if the number of offspring of each task does not reach K then
19: The newly generated individual is added into the offspring population of

the corresponding task until the population size of the task reaches K
20: end if
21: end while
22: Output the offspring population Ot

dataset of colon pathology, and OrganMNIST Axial, Orag-
nMNIST Coronal, and OrganMNIST Sagittal through dif-
ferent processing methods in abdominal 3D CT along three
axes, listed in Table B.

we use the same parameter settings recommended in [4]
for a fair comparison, meaning the maximum number of
generations is set to 100 for EMT-NAS, R is set to 1 (normal
cells stacked once) and the initial channel number is set to
48 during the search process. Experiments on MedMNIST
with a search phase only. When the search phase is over, the
optimal network searched (including the network architec-
ture and its weights) is retested for classification accuracy
on the test set and then compared to the networks found by
other NAS algorithms. Similar to previous work [5], other
parameters are the same as those in Table 1 in the main pa-
per.

C.2. CIFAR-10 and CIFAR-100

CIFAR-10 and CIFAR-100 [1] are datasets of color im-
ages of 10 and 100 classes, respectively, with a size of
32*32. The training set contains 50,000 images and the test
set has 10,000 images. We divide the training set into a
new training set and a validation set on a 4-to-1 ratio. The
new training and validation sets are used for the EMT-NAS
search phase, while the test set is used for the performance
evaluation of the network architecture.

Similar to [5], the main parameter settings of EMT-NAS

are listed in Table 1 in the main paper. In the search phase,
R in is set to 1, meaning that normal cell is stacked only
once in each network architecture and the initial number of
channels is 20. In the retraining stage, R is set to 2 (normal
cells in the best network architecture is increased to 2), the
initial channel number is set to 48, and all models use an
auxiliary classifier located 2/3 of the way up the network
and the loss weight of the auxiliary classifier is 0.4, for a
total of 600 epochs.

C.3. ImageNet

ImageNet [3] contains a thousand classification datasets,
of which the training set has 1,281,167 images and the val-
idation set has 50,000 images, making it one of the most
challenging datasets in image classification.

For re-training on ImageNet, we follow the previous
work [5], three convolution layers with 3×3 convolution
kernels are added to the convolution layer of the model
found on the CIFAR-10 and CIFAR-100 datasets. we adopt
pre-processing with image size 224×224 [5], 300 epochs,
batch size of 512, SGD optimizer with linearly decayed
learning rate initialized as 0.05, momentum of 0.9, and
weight decay of 1 × 10−4. Learning rate warming starts [2]
in the initial 5 epochs, it then decays every 100 epochs at a
rate of 0.1. A Dropout layer [5] of rate 0.05 is added before
the last linear layer.

D. Two Baselines for Joint Training

We have compared the two baselines, JT-S (combine data
from all tasks and train them together, but share the same
architecture in the NAS.), and JT-D (combine data from all
tasks and jointly train them, and each task has individual ar-
chitecture, but the supernet weight is shared across all tasks)
on C-10 and C-100. The hyperparameters settings for JT-S
and JT-D are the same as for EMT-NAS and their results are
listed in Table C. From these results, we see that EMT-NAS
outperformed both JT-S and JT-D in terms of validation ac-
curacy of the best individual at the end of the search and its
test accuracy after retraining. This might be attributed to the
fact that jointly training the weights of the supernet may ex-
acerbate catastrophic forgetting, making the algorithm un-
able to distinguish between different architectures. This ef-
fect will be more serious for JT-S, where the architecture is
the same. In Fig. B, we note that the variance of JT-S is
larger than that of JT-D, further confirming our hypothesis.



Table C. Comparison of two baselines JT-S and JT-D on C-10 and
C-100. ∗ indicates that the average validation results of JT-S on
C-100 is the same as on C-10.

Model GPU
days

Task 1 (C-10) Task 2 (C-100)
Validation
ACC (%)

Test
ACC (%)

Params
(M)

Validation
ACC (%)

Test
ACC (%)

Params
(M)

JT-S (Baseline) 0.50 72.57±10.8 87.21±12.3 1.76 ∗ 72.26±6.76 1.73
JT-D (Baseline) 0.46 85.14±1.04 96.22±0.22 1.90 60.15±1.07 79.53±0.21 1.91
EMT-NAS (Ours) 0.42 88.76±1.05 96.73±0.15 2.17 61.69±2.15 81.86±0.10 2.30

(a) (b)
Figure B. Comparison of best individual fitness during the search
process on C-10 and -100. JT-S fitness is averaged on C-10 and
-100, so the values are not comparable with ST-D and EMT-NAS.

Table D. Comparison of EMT-NAS when the population size is set
to 10, 20, 30, and 40.

POP Task 1 Validation
ACC (%)

Test
ACC (%) Task 2 Validation

ACC (%)
Test

ACC (%)
Time
(%) ↓

10 C-10 88.91±1.18 96.41±0.21 C-100 61.28±3.20 81.14±0.18 +0.0
20 C-10 88.76±1.05 96.73±0.15 C-100 61.69±2.01 81.86±0.10 +8.2
30 C-10 87.48±0.73 96.59±0.18 C-100 58.96±2.66 81.07±0.46 +13.3
40 C-10 86.49±1.28 96.38±0.27 C-100 57.74±2.03 80.85±0.52 +18.8

Table E. Comparison of EMT-NAS when the crossover probability
is set to 1.00, 0.95, and 0.90.

CP Task 1 Validation
ACC (%)

Test
ACC (%) Task 2 Validation

ACC (%)
Test

ACC (%)
1.00 C-10 88.76±1.05 96.73±0.15 C-100 61.69±2.15 81.86±0.10
0.95 C-10 88.63±0.70 96.39±0.20 C-100 61.63±0.89 81.25±0.58
0.90 C-10 88.10±0.87 96.44±0.12 C-100 60.51±1.97 81.02±0.47

E. Analysis of Parameters
Population Size: we set the population size POP =
10, 20, 30, 40 and the statistical results are given in Ta-
ble D. The overall runtime of EMT-NAS increases as POP
slightly increases mainly because the number of networks
to be assessed on the validation set increases. The perfor-
mance on the test dataset achieves the best when the popu-
lation size is set to 20.
Crossover Probability: We set the crossover probability
CP = 1.00, 0.95, 0.90 and the statistical results are pre-
sented in Table E. From these results, we can conclude that
the best performance was achieved on both the validation
and test sets, when CR = 1.00. Hence, the crossover prob-
ability is set to 1.00.
Mutation Probability: we set the mutation probability
MP = 0.02, 0.04, 0.06, 0.08, 0.10 and the statistical result
are given in Table F. We found that as MP increases, the
validation accuracy on both tasks decrease. However, the
test accuracy varies. On the one hand, these results indicates

Table F. Comparison of EMT-NAS when the mutation probability
is set to 0.02, 0.04, 0.06, 0.08, and 0.10.

MP Task 1 Validation
ACC (%)

Test
ACC (%) Task 2 Validation

ACC (%)
Test

ACC (%)
0.02 C-10 88.76±1.05 96.73±0.15 C-100 61.69±2.15 81.86±0.10
0.04 C-10 86.29±1.40 96.45±0.20 C-100 57.46±3.79 80.97±0.43
0.06 C-10 85.81±1.23 96.40±0.06 C-100 56.27±1.48 81.31±0.29
0.08 C-10 84.03±0.78 96.52±0.28 C-100 55.12±0.64 80.90±1.12
0.10 C-10 83.31±2.07 96.36±0.24 C-100 53.56±1.28 80.45±0.43

Table G. Comparison of EMT-NAS when the generation number
is set to 100, 200, 300, and 400.

GN Task 1 Validation
ACC (%)

Test
ACC (%) Task 2 Validation

ACC (%)
Test

ACC (%)
100 C-10 82.44±1.19 96.33±0.19 C-100 51.42±2.44 80.26±1.05
200 C-10 86.45±0.84 96.49±0.16 C-100 58.87±0.74 80.68±0.25
300 C-10 88.76±1.05 96.73±0.15 C-100 61.69±2.15 81.86±0.10
400 C-10 87.35±1.19 96.62±0.08 C-100 61.15±2.29 81.03±0.55

that the mutation probability should be kept small, which is
consistent with the known knowledge in evolutionary opti-
mization. On the other hand, the increase in mutation prob-
ability may be attributed to the fact that higher mutation rate
makes the sampled validation less accuracy. Hence, the mu-
tation probability is set to 0.02.
Generation Number: we set the generation number GN =
100, 200, 300, 400 and the statistical result are given in Ta-
ble G. We found that as GN increased, the validation ac-
curacy and test accuracy increased and then decreased for
both tasks. And, as GN increases, the running time of the
EMT-NAS increases. Hence, the generation number is set
to 300.

F. Network Architectures Visualisation
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(a) Normal Cell (b) Reduction Cell

Figure C. Normal and reduction Cells discovered by EMT-NAS on Task 1 (CIFAR-10)

(a) Normal Cell (b) Reduction Cell

Figure D. Normal and reduction Cells discovered by EMT-NAS on Task 2 (CIFAR-100)
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