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A. Proof of Reprojection Error Covariance

In this section, we perform a detailed proof of reprojec-
tion error covariance. Firstly, we decompose a normalized
image measurement point qj

i =
[
c r

]>
into a perfect nor-

malized image measurement point q̃j
i =

[
c̃ r̃

]>
and a nor-

malized image Gaussian measurement noise
[
nc nr

]>
:[

c r
]>

=
[
c̃ r̃

]>
+
[
nc nr

]>
, (1)

with, [
nc nr

]> ∼ N (0,WΣW>), (2)

W =

[
1/fx 0

0 1/fy

]
, (3)

where Σ is the prior Gaussian measurement noise and fx fy
are the x-axis and y-axis focal length respectively. Then we
can substitute Eq. (1) to the normalized measurement based
reprojection cost function as:

ej
i =

[
cji rji

]> −Π(Rj(rji )Pi + tj(rji ))

=
[
cji rji

]> −Π(Rj(r̃ji + nr)Pi + tj(r̃ji + nr)),
(4)

where Π(Rj(r̃ji + nr)Pi + tj(r̃ji + nr)) can be linearized
using the Taylor first order approximation:

Π(Rj(r̃ji + nr)Pi + tj(r̃ji + nr))

≈
[
c̃ji
r̃ji

]
+
∂Π(Rj(rji )Pi + tj(rji ))

∂nr
nr.

(5)
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Then by substituting Eq. (5) into Eq. (4), we have

ej
i =

[
nc
nr

]
− ∂Π(Rj(rji )Pi + tj(rji ))

∂nr
nr = Cj

i

[
nc
nr

]
. (6)

By applying the chain rule of derivation, we can get the
analytical formulation of matrix Cj

i .

∂Π(Rj(rji )Pi + tj(rji ))

∂nr
=
∂Π(Rj(rji )Pi + tj(rji ))

∂Pcj
i

∂Pcj
i

∂nr
, (7)

with,

∂Π(Rj(rji )Pi + tj(rji ))

∂Pcj
i

=


1

Zcj
i

0

0 1

Zcj
i

−Xcj
i

Zcj
i

2

−Y cj
i

Zcj
i

2


>

, (8)

∂Pcj
i

∂nr
= [ωj ]×RjPi + dj . (9)

By substituting Eq. (7) into Eq. (6), we can get analytical
formulation:

Cj
i =

[
1 0
0 1

]
−


1

Zcj
i

0

0 1

Zcj
i

−Xcj
i

Zcj
i

2

−Y cj
i

Zcj
i

2


>

([ωj ]×RjPi + dj)

[
0
1

]>
, (10)

where Pcj
i =

[
Xcj

i Y cj
i Zcj

i

]>
= Rj(rji )Pi + tj(rji )

is the world point Pi in camera j coordinates. Combining
Eq. (2) with Eq. (6), we prove that ej

i follows a weighted
Gaussian distribution:

ej
i ∼ N (0,Cj

iWΣW>Cj
i

>
). (11)
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B. Analytical Jacobian matrix Derivation
In this section, we provide a detailed derivation of the

analytical Jacobian matrix used in our proposed NW-RSBA
solution.

B.1. Jacobian Matrix Parameterization

To derive the analytical Jacobian matrix of Eq. (15), we
use ξji ∈ so(3) to parametrize Rj

i ∈ SO(3). These two
representations can be transformed to each other by Ro-
drigues formulation Rj

i = Exp(ξji ) and ξji = Log(Rj
i ),

which are defined as:

R = Exp(ξ)

= I +
sin(‖ξ‖)
‖ξ‖

ξ∧ +
1− cos(‖ξ‖)
‖ξ‖2

(ξ∧)
2
.

(12)

ξ = Log(R)

=
θ

2sin(θ)
(R−R>)

∨
,

(13)

with,

θ = arccos((tr(R)− 1)/2), (14)

where ∧ is the skew-symmetric operator that can transform
a vector to the corresponding skew-symmetric matrix. Be-
sides, ∨ is the inverse operator.

B.2. Partial Derivative of Reprojection error

Recall the normalized weighted error term, which is de-
fined as:

êj
i = Σ−

1
2 W−1Cj

i

−1
ej
i . (15)

Then we can get five atomic partial derivatives of ∂êj
i over

∂Pi, ∂ξj , ∂tj , ∂ωj and ∂dj as:

∂êj
i

∂Pi
= Σn

− 1
2 W−1(Cj

i

−1 ∂ej
i

∂Pcj
i

∂Pcj
i

∂Pi
+

[
ej
i

> ∂Cj
i (1)

−>

∂Pi

ej
i

> ∂Cj
i (2)

−>

∂Pi

]
), (16)

∂êj
i

∂ξj
= Σn

− 1
2 W−1(Cj

i

−1 ∂ej
i

∂Pcj
i

∂Pcj
i

∂ξj
+

ej
i

> ∂Cj
i (1)

−>

∂ξj

ej
i

> ∂Cj
i (2)

−>

∂ξj

), (17)

∂êj
i

∂tj
= Σn

− 1
2 W−1(Cj

i

−1 ∂ej
i

∂Pcj
i

∂Pcj
i

∂tj
+

[
ej
i

> ∂Cj
i (1)

−>

∂tj

ej
i

> ∂Cj
i (2)

−>

∂tj

]
), (18)

∂êj
i

∂ωj
= Σn

− 1
2 W−1(Cj

i

−1 ∂ej
i

∂Pcj
i

∂Pcj
i

∂ωj
+

[
ej
i

> ∂Cj
i (1)

−>

∂ωj

ej
i

> ∂Cj
i (2)

−>

∂ωj

]
), (19)

∂êj
i

∂dj
= Σn

− 1
2 W−1(Cj

i

−1 ∂ej
i

∂Pcj
i

∂Pcj
i

∂dj
+

[
ej
i

> ∂Cj
i (1)

−>

∂dj

ej
i

> ∂Cj
i (2)

−>

∂dj

]
), (20)

with,

∂ej
i

∂Pcj
i

= −

 1

Zcj
i

0 − Xcj
i

(Zcj
i )

2

0 1

Zcj
i

− Y cj
i

(Zcj
i )

2

 , (21)

∂Pcj
i

∂Pi
= (I + [ωj ]×r

j
i )Rj , (22)

∂Pcj
i

∂ξj
= −(I + [ωj ]×r

j
i )[RjPi]×, (23)

∂Pcj
i

∂tj
= [I]3×3, (24)

∂Pcj
i

∂ωj
= −rji [RjPi]×, (25)

∂Pcj
i

∂dj
= rji [I]3×3, (26)

where Cj
i (1) and Cj

i (2) represents the first and second row
of matrix Cj

i respectively.

We further need to derive the partial derivatives of
∂Cj

i (.)
−> over ∂Pi, ∂ξj , ∂tj , ∂ωj and ∂dj in Eq. (16

- 20). Recall the Cj
i and W definition in Eq. (10) and

Eq. (3). For convenience, we define the following two
intermediate variables:

γj
i =


1

Zcj
i

0

0 1

Zcj
i

−Xcj
i

Zcj
i

2

−Y cj
i

Zcj
i

2


>

, (27)

δji = [ωj ]×RjPi + dj . (28)

Then we can rewrite Eq. (10) as:

Cj
i =

[
1 0
0 1

]
− γj

i δ
j
i

[
0 1

]
=

[
1 −γj

i δ
j
i

0 1− γj
i δ

j
i

]
, (29)

and its inverse formulation as:

Cj
i

−1
=

1
γj
i δ

j
i

1−γj
i δ

j
i

0 1

1−γj
i δ

j
i

 . (30)

Then we can derive the partial derivative as:

∂Cj
i (1)−>

∂Pi
=

 [0]1×3

(1−β)
∂α

j
i

∂Pi
+α

∂β
j
i

∂Pi

(1−βj
i )

2

 , (31)



∂Cj
i (2)

−>

∂Pi
=

 [0]1×3
∂β

j
i

∂Pi

(1−βj
i )

2

 , (32)

∂Cj
i (1)−>

∂ξj
=

 [0]1×3

(1−βj
i )

∂α
j
i

∂ξj
+αj

i

∂β
j
i

∂ξj

(1−βj
i )

2

 , (33)

∂Cj
i (2)

−>

∂ξj
=

 [0]1×3
∂β

j
i

∂ξj

(1−βj
i )

2

 , (34)

∂Cj
i (1)−>

∂tj
=

 [0]1×3

(1−βj
i )

∂α
j
i

∂tj
+αj

i

∂β
j
i

∂tj

(1−βj
i )

2

 , (35)

∂Cj
i (2)

−>

∂tj
=

 [0]1×3
∂β

j
i

∂tj

(1−βj
i )

2

 , (36)

∂Cj
i (1)−>

∂ωj
=

 [0]1×3

(1−βj
i )

∂α
j
i

∂ωj +α
j
i

∂β
j
i

∂ωj

(1−βj
i )

2

 , (37)

∂Cj
i (2)

−>

∂ωj
=

 [0]1×3
∂β

j
i

∂ωj

(1−βj
i )

2

 , (38)

∂Cj
i (1)−>

∂dj
=

 [0]1×3

(1−βj
i )

∂α
j
i

∂dj +αj
i

∂β
j
i

∂dj

(1−βj
i )

2

 , (39)

∂Cj
i (2)

−>

∂dj
=

 [0]1×3
∂β

j
i

∂dj

(1−βj
i )

2

 , (40)

where C(1) and C(2) are the first and second row of C
respectively, and two intermediate variables αj

i β
j
i are the

first and second row of γj
i δ

j
i respectively

γj
i δ

j
i =

[
αj

i

βj
i

]
. (41)

Finally we have to derive the partial derivative of
∂αj

i and ∂βj
i over ∂Pi, ∂ξj , ∂tj , ∂ωj and ∂dj in Eq. (31

- 40):

∂(γj
i δ

j
i )

∂Pi
= γj

i

∂δji
∂Pi

+

δji> ∂γj
i (1)

>

∂Pcj
i

∂Pcj
i

∂Pi

δji
> ∂γj

i (2)
>

∂Pcj
i

∂Pcj
i

∂Pi

 , (42)

∂(γj
i δ

j
i )

∂ξj
= γji

∂δji
∂ξj

+

δji> ∂γj
i (1)

>

∂Pcj
i

∂Pcj
i

∂ξj

δji
> ∂γj

i (2)
>

∂Pcj
i

∂Pcj
i

∂ξj

 , (43)

∂(γj
i δ

j
i )

∂tj
= γj

i

∂δji
∂tj

+

δji> ∂γj
i (1)

>

∂Pcj
i

∂Pcj
i

∂tj

δji
> ∂γj

i (2)
>

∂Pcj
i

∂Pcj
i

∂tj

 , (44)

∂(γj
i δ

j
i )

∂ωj
= γj

i

∂δji
∂ωj

+

δji> ∂γj
i (1)

>

∂Pcj
i

∂Pcj
i

∂ωj

δji
> ∂γj

i (2)
>

∂Pcj
i

∂Pcj
i

∂ωj

 , (45)

∂(γj
i δ

j
i )

∂dj
= γj

i

∂δji
∂dj

+

δji> ∂γj
i (1)

>

∂Pcj
i

∂Pcj
i

∂dj

δji
> ∂γj

i (2)
>

∂Pcj
i

∂Pcj
i

∂dj

 , (46)

with,

∂γj
i (1)>

∂Pcj
i

=


0 0 − 1

Zcj
i

2

0 0 0

− 1

Zcj
i

2 0
2Xcj

i

Zcj
i

3

 , (47)

∂γj
i (2)>

∂Pcj
i

=


0 0 0
0 0 − 1

Zcj
i

2

0 − 1

Zcj
i

2

2Y cj
i

Zcj
i

3

 , (48)

∂δji
∂Pi

= [ωj ]×Rj , (49)

∂δji
∂ξj

= [ωj ]×[RjPi]×, (50)

∂δji
∂tj

= [0]3×3, (51)

∂δji
∂ωj

= −[RjPi]×, (52)

∂δji
∂dj

= [I]3×3. (53)

C. The proof of degeneracy resilience ability
As proved in [1], under the planar degeneracy config-

uration, the y-component of the reprojection error will re-
duce to zero. To say it in another way, the noise perturba-
tion along the y-component of the observation will not be
reflected in the y-component of the reprojection error (re-
mains at zero). The reprojection error covariance matrix
must have a zero variance in the y-coordinate of its values
according to the definition of covariance. We prove this the-
oretically in the following.



In correspondence with notations in the manuscript, we
first define Pgj

i = [Xgj
i Y

gj
i Z

gj
i ]
> = Rj

0Pi + tj0 and it
can be related with Pcj

i as [ωj ]×Rj
0Pi + dj = (Pcj

i −
Pgj

i ) / v
j
i . Then we rewrite the Eq. (10):

Cj
i =

[
1 0
0 1

]
−


1

Zcj
i

0

0 1

Zcj
i

−Xcj
i

Zcj
i

2

−Y cj
i

Zcj
i

2


>

Pcj
i −Pgj

i

vji

[
0
1

]>

=

[
1 0
0 1

]
−

Zgj
iX

cj
i−Z

cj
iX

gj
i

vj
iZ

cj
i

2

Zgj
iY

cj
i−Z

cj
iY

gj
i

vj
iZ

cj
i

2

[0
1

]>
.

(54)

Under the degeneracy configuration, the observed point
will project to the plane y = 0 in the camera coordinate. We
then substitute the degeneracy condition Y gj

i = 0, Zgj
i =

Zcj
i , v

j
i = Y cj

i/Z
cj
i into Eq.(54). It can be verified that the

lower right component of Cj
i reduces to zero, which means

that the y-coordinate variance in the reprojection error co-
variance matrix will reduce to zero.

Based on the explicitly modeled reprojection error co-
variance, we can decompose its inverse form and then
reweight the reprojection error Eq.(11-13), which will re-
sult an isotropy covariance (Fig. 3). The corresponding
weight will rapidly approach infinite during the degeneracy
process since the y-coordinate variance gradually reduces
to zero. As a result, the reweighted reprojection error will
grow exponentially, which will prevent the continuation of
the degeneracy. The error of NM-RSBA decreases gradu-
ally during the degeneracy process, while NW-RSBA grows
exponentially and converges around the ground truth.

D. The equivalent between Normalized DC-
RSBA and NW-RSBA

In this section, we provide an equivalent proof and il-
lustrate the deep connection between the Normalized DC-
RSBA and proposed NW-RSBA method.

D.1. Pre-definition

Recall the Eq. (6), we define a new vector χj
i for conve-

nience:

χj
i =

∂Π(Rj(rji )Pi + tj(rji ))

∂nr

=
∂Π(Rj(rji )Pi + tj(rji ))

∂rji
,

(55)

then we can reformulate Eq. (10) as:

Cj
i =

[
1 0
0 1

]
− ∂Π(Rj(rji )Pi + tj(rji ))

∂nr

[
0 1

]
=

[
1 −χj

i (1)

0 1− χj
i (2)

]
,

(56)

where χj
i (1) χj

i (2) are the first and second row of χj
i , and

its inverse formulation is defined as:

Cj
i

−1
=

1
χj

i (1)

1−χj
i (2)

0 1

1−χj
i (2)

 . (57)

Then we can define a new rectified image coordinate vector[
cji

”
rji

”
]>

which represents the virtual image point after
weighting.[

cji
rji

]
−

[
cji

”

rji
”

]
= Cj

i

−1
(

[
cji
rji

]
−

[
cji

′

rji

′

]
), (58)

where
[
cji

′

rji

′]>
is the projection image point with image

measurement
[
cji rji

]>
, which is defined as:[

cji

′

rji

′]>
= Π(Rj(rji )Pi + tj(rji )). (59)

Our goal is to prove that using rectified coordinates as the
observed image point will project on the same image point
with the normalized measurement-based projection. We can
summarize such equivalent as the following equation:[

cji
”

rji
”
]>

= Π(Rj(rji
”
)Pi + tj(rji

”
)). (60)

We follow the schedule that firstly solves the Eq. (58) to get

the rectified image coordinate vector
[
cji

”
rji

”
]>

, use the
rectified image coordinate vector in normalized measure-
ment based projection to get the projection point and finally
check out whether it is the same.

D.2. New Rectified Image Coordinate Solution

We solve Eq. (58) consequently. Firstly, we solve rji
”
.

(1− χj
i (2))(rji − r

j
i

”
) = (rji − r

j
i

′

), (61)

rji
”

= rji +
rji

′

− rji
1− χj

i (2)

= rji

′

+
χj

i (2)(rji

′

− rji )

1− χj
i (2)

,

(62)

We then substitute rji
”

to solve cji
”
.

(cji − c
j
i

”
) =

χj
i (1)

1− χj
i (2)

(rji − r
j
i

′

) + (cji − c
j
i

′

), (63)

cji
”

= cji

′

+
χj

i (1)(rji

′

− rji )

1− χj
i (2)

. (64)



D.3. Proof of equivalent after projection

We then substitute rji
”

and cji
”

in normalized measurement
based projection.[

cji
new

rji
new

]
= Π(Rj(rji

”
)Pi + tj(rji

”
))

= Π(Rj(rji +
rji

′

− rji
1− χj

i (2)
)Pi + tj(rji +

rji

′

− rji
1− χj

i (2)
))

≈

[
cji

′

rji

′

]
+ (

∂Π(Rj(rji )Pi + tj(rji ))

∂rji
)
rji

′

− rji
1− χj

i (2)

=

[
cji

′

rji

′

]
+ χj

i

rji

′

− rji
1− χj

i (2)

=

[
cji

”

rji
”

]

(65)

D.4. Connection between Normalized DC- RSBA
and NW-RSBA

From Eq. (65), we can get a such summary that Nor-
malized DC-RSBA is equivalent to the proposed NW-RSBA
mathematical. It is amazing to view that although the
two formulations are totally different from each other,
they both bring in the implicit rolling shutter constraint
to optimization. However, although these two methods
are equivalent to each other, our proposed NW-RSBA is
much easier and faster to solve since we provide detailed
analytical Jacobian matrices.

E. Proposed NW-RSBA Algorithm Pipeline
In this section, we provide a detailed bundle adjustment

algorithm pipeline with the standard Gauss-Newton least
square solver.

List of Algorithms
1 Normalized Weighted RSBA . . . . . . . . . 5
2 Computation of weighted reprojection error . 5
3 Computation of Jacobian matrix . . . . . . . 6
4 Solve the normal equation using two-stage

Schur complement . . . . . . . . . . . . . . 6

F. Experimental Settings and Evaluation Met-
rics

In this section, we provide detailed experiment settings
and evaluation metrics used in synthetic data experiments
and real data experiments.

F.1. Synthetic Data

Experimental Settings. We simulate 5 RS cameras located
randomly on a sphere with a radius of 20 units pointing to

Algorithm 1: Normalized Weighted RSBA
Input: Initial rolling shutter camera poses

{R1, t1,ω1,d1},...,{Rj , tj ,ωj ,dj}, points
P1,...,Pi as θ and point measurement in
normalized image coordinate q1...j

1...i

Output: Refined parameters θ∗

1 while (not reach max iteration) and (not satisfy
stopping criteria) do

2 for Each camera j ∈ F do
3 for Each point i ∈ Pj do
4 Calculate weighted reprojection error êj

i

using Alg. 2;
5 Construct Jacobian matrix Jj

i using
Alg. 3;

6 Parallel connect Jj
i to J;

7 Stack êj
i into ê;

8 end
9 end

10 Solve normal equation J>Jδ = −J>ê using
Alg. 4;

11 Update camera poses and points parameters θ
using δ;

12 end

Algorithm 2: Computation of weighted reprojec-
tion error

Input : Rolling shutter camera poses
{Rj , tj ,ωj ,dj}, points Pi and point
measurement in normalized image
coordinate qj

i

Output: Normalized weighted error êj
i

1 Compute weight matrix Cj
i using Eq. (10);

2 Compute standard reprojection error ej
i ;

3 Return normalized weighted reprojection error êj
i

using Eq. (15);

a cubical scene with 56 points. The RS image size is 1280
× 1080 px, the focal length is about 1000, and the optical
center is at the center of the image domain. We compare all
methods by varying the speed, the noise on image measure-
ments, and the readout direction. The results are obtained
after collecting the errors over 300 trials each epoch. The
default setting is 10 deg/frame and 1 unit/frame for angular
and linear velocity, standard covariance noise.

• Varying Speed: We evaluate the accuracy of five ap-
proaches against increasing angular and linear velocity
from 0 to 20 deg/frame and 0 to 2 units/frame gradu-
ally, with random directions.



Algorithm 3: Computation of Jacobian matrix

Input : RS camera poses {Rj , tj ,ωj ,dj}, points
coordinate Pi and point measurement in
normalized image coordinate qj

i

Output: Jacobian matrix Jj
i

1 Calculate ∂êj
i

∂Pi
using Eq. (16);

2 Calculate ∂êj
i

∂ξj using Eq. (17);

3 Calculate ∂êj
i

∂tj using Eq. (18);

4 Calculate ∂êj
i

∂ωj using Eq. (19);

5 Calculate ∂êj
i

∂dj using Eq. (20);
6 Construct

Jj
i =

[
Jj
i,rs Jj

i,gs Jj
i,p

]
=
[
[
∂êj

i

∂ωj ,
∂êj

i

∂dj ] [
∂êj

i

∂ξj ,
∂êj

i

∂tj ]
∂êj

i

∂Pi

]
;

Algorithm 4: Solve the normal equation using two-
stage Schur complement

Input : Jacobian matrix J and weighted error
vector ê

Output: Updated vector δ
1 Compute Schur complement matrix Sp and Srs;
2 Compute auxiliary vectors t∗ and u∗;
3 Solve normal equation cascadingly:

• Get δrs by solving Srsδrs = −t∗;

• Get δgs by solving U∗δgs = −u∗ − S∗>δrs;

• Get δp by solving Vδp = −v −T>δrs −W>δgs;

• Stack δgs δrs δp into δ;

• Varying Noise Level: We evaluate the accuracy of five
approaches against increasing noise level from 0 to 2
pixels.

• Varying Readout Direction: We evaluate the robust-
ness of five methods with an RS critical configuration.
Namely, the readout directions of all views are almost
parallel. Thus, we vary the readout directions of the
cameras from parallel to perpendicular by increasing
the angle from 0 to 90 degrees.

• Runtime: We compare the time cost of all methods
against increasing the number of cameras from 50 -
250 with a fixed number of points.

Evaluation metrics. In this section, we use three metrics

to evaluate the performances, namely reconstruction error,
rotation error, and translation error.

• Reconstruction Error epoint: We use the reconstruc-
tion error to measure the difference between computed
and ground truth 3D points, which is defined as:
epoint =

∥∥P−PGT
∥∥2.

• Rotation Error erot: We utilize the geodesic distance
to measure the error between optimized rotation and
ground truth. The error is defined as:
erot = arccos((tr(RR>GT)− 1)/2).

• Translation Error etrans: We use normalized inner
product distance to measure the error between opti-
mized translation and ground truth, which is defined
as:
etrans = arccos(t>tGT/(‖t‖ ‖tGT‖)).

F.2. Real Data

Datasets Settings. We compare all the RSC methods in the
following publicly available RS datasets.

• WHU-RSVI: WHU dataset 1 was published in [2] and
provided ground truth synthetic GS images, RS images
and camera poses.

• TUM-RSVI: The TUM RS dataset2 was published
in [6] and contained time-synchronized global-
shutter, and rolling-shutter images captured by a
non-perspective camera rig and ground-truth poses
recorded by motion capture system for ten RS video
sequences.

Evaluation metrics. In this section, we use three metrics to
evaluate the performances, namely absolute trajectory error,
tracking duration and real-time factor.

• Absolute trajectory error (ATE). We use the abso-
lute trajectory error (ATE) [6] to evaluate the VO re-
sults quantitatively. Given ground truth frame posi-
tions c̄i ∈ R3 and corresponding Orb-SLAM [5] track-
ing results ci ∈ R3 using corrected sequence by each
RSC method. It is defined as

eate = min
T∈Sim(3)

√√√√ 1

n

n∑
i=1

‖T(ci)− c̄i‖, (66)

where T ∈ Sim(3) is a similarity transformation that
aligns the estimated trajectory with the ground truth
one since the scale is not observable for monocular
methods. We run each method 20 times on each se-
quence to obtain the ATE eate.

1http://aric.whu.edu.cn/caolike/2019/11/05/the-whu-rsvi-dataset/
2https://vision.in.tum.de/data/datasets/rolling-shutter-dataset

http://aric.whu.edu.cn/caolike/2019/11/05/the-whu-rsvi-dataset/
https://vision.in.tum.de/data/datasets/rolling-shutter-dataset


• Tracking duration (DUR). Besides, we find out that
some RSC solutions provide the results of corrections
that are even worse than the original input RS frames.
This leads to failure in tracking and makes Orb-SLAM
interrupt before the latest capture frame. Therefore, we
use the ratio of the successfully tracked frames out of
the total frames DUR as an evaluation metric.

• Realtime factor ε. The realtime factor ε is calculated
as the sequence’s actual duration divided by the algo-
rithm’s processing time.
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Figure 1. Camera pose (2nd and 3rd columns) and reconstruction (1st column) errors of GSBA, DC-RSBA, DM-RSBA, NM-RSBA and NW-
RSBA with increasing angular and linear velocity (1st row) and noise levels in the image (2nd row) in general scenes, also with increasing
readout directions in degeneracy scene (3rd row).
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Figure 2. Time cost of GSBA [4], DC-RSBA [3], NM-RSBA [1], NW-RSBA-0S (without Schur complement), NW-RSBA-1S (one-stage Schur
complement to Jacobian matrices with series connection), and proposed NW-RSBA-2S (two-stage Schur complement to Jacobian matrices
with parallel connection) with increasing camera number.
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Figure 3. Ground truth and trajectories estimated by GSBA [4], NM-RSBA [1] and proposed NW-RSBA after Sim(3) alignment on 10
sequences from TUM-RSVI [6] and 2 sequences from WHU-RSVI [2] datasets.
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