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This document presents additional descriptions and results that are not included in the manuscript due to the page limit.
In Section A, we present pseudo codes of the training procedures when the proposed BiasAdv is applied to ERM, JTT [9],
and LfF [11], respectively. In Section B, we present sensitive analysis on the hyper-parameters of BiasAdv. In Section C, we
provide additional qualitative results. In Section D, we describe further details of our experimental setup.

A. Training with BiasAdv
In this work, we apply BiasAdv to three different methods to verify its effectiveness and general applicability: a vanilla

ERM (ERM + BiasAdv), JTT [9] (JTT + BiasAdv), and LfF [11] (LfF + BiasAdv). In the case of ERM + BiasAdv, since
the vanilla ERM does not have an auxiliary model, we introduce an auxiliary model and train it with the GCE [15] loss,
as in [6, 11]. For JTT and LfF, BiasAdv is seamlessly integrated by utilizing the auxiliary model used in their method.
BiasAdv does not change the architecture or algorithm of LfF and JTT. The pseudo codes of the training procedure for ERM
+ BiasAdv, JTT + BiasAdv, and LfF + BiasAdv are presented in Algorithm 1, Algorithm 2, and Algorithm 3, respectively.
The newly added parts by BiasAdv are marked in blue. Note that BiasAdv is easy to implement with just a few lines that are
easily applicable to any debiasing methods based on the biased auxiliary model. Therefore, BiasAdv can be a very practical
and effective solution for learning debiased representations.

Algorithm 1 Training procedure of ERM + BiasAdv

Require: Training datasetD, neural networks fθ and gϕ, cross entropy loss L, generalized cross entropy loss Lg , adversarial
perturbation ϵ, hyper-parameters λ and β, learning rate η, batch size B, number of iterations T .

1: Initialize two networks fθ(x; θ) and gϕ(x;ϕ) ▷ fθ: debiased model, gϕ: biased model
2: for t = 1, 2, · · · , T do
3: Draw a mini-batch B =

{
(x(i), y(i))

}B

i=1
from D

4: for i = 1, 2, · · · , B do

5: x
(i)
adv ← argmax

x̃(i):=x(i)+ϵ

[
L(x̃(i), y(i);ϕ)− λ · L(x̃(i), y(i); θ)

]
▷ Adversarial attack using PGD [10]

6: end for

7: Rg(ϕ)←
1

B

B∑
i=1

Lg(x
(i), y(i);ϕ)

8: ϕ← ϕ− η∇ϕRg(ϕ) ▷ Update gϕ

9: Rf (θ)←
1

B

B∑
i=1

L(x(i), y(i); θ)+
β

B

B∑
i=1

L(x(i)
adv, y

(i); θ)

10: θ ← θ − η∇θRf (θ) ▷ Update fθ
11: end for

*Corresponding author: jonny.lim@samsung.com

1

mailto:jonny.lim@samsung.com


Algorithm 2 Training procedure of JTT + BiasAdv

Require: Training dataset D, neural networks fθ and gϕ, cross entropy loss L, adversarial perturbation ϵ , hyper-parameters
λ and β , learning rate η, batch size B, number of up-sampling Nup, number of iterations T1 and T2.

1: Initialize two networks fθ(x; θ) and gϕ(x;ϕ) ▷ fθ: debiased model, gϕ: biased model
2: for t = 1, 2, · · · , T1 do ▷ Train gϕ on D via ERM for T1 steps
3: Draw a mini-batch B =

{
(x(i), y(i))

}B

i=1
from D

4: Rg(ϕ)←
1

B

B∑
i=1

L(x(i), y(i);ϕ)

5: ϕ← ϕ− η∇ϕRg(ϕ) ▷ Update gϕ
6: end for
7: E ← {(xi, yi) s.t. gϕ(xi) ̸= yi} ▷ Construct an error set E
8: Construct up-sampled dataset Dup containing examples in the error set Nup times and all other examples once.
9: for t = 1, 2, · · · , T2 do ▷ Train fθ on Dup via ERM for T2 steps

10: Draw a mini-batch B =
{
(x(i), y(i))

}B

i=1
from Dup

11: for i = 1, 2, · · · , B do

12: x
(i)
adv ← argmax

x̃(i):=x(i)+ϵ

[
L(x̃(i), y(i);ϕ)− λ · L(x̃(i), y(i); θ)

]
▷ Adversarial attack using PGD [10]

13: end for

14: Rf (θ)←
1

B

B∑
i=1

L(x(i), y(i); θ)+
β

B

B∑
i=1

L(x(i)
adv, y

(i); θ)

15: θ ← θ − η∇θRf (θ) ▷ Update fθ
16: end for

Algorithm 3 Training procedure of LfF + BiasAdv

Require: Training datasetD, neural networks fθ and gϕ, cross entropy loss L, generalized cross entropy loss Lg , adversarial
perturbation ϵ , hyper-parameters λ and β , learning rate η, batch size B, number of iterations T .

1: Initialize two networks fθ(x; θ) and gϕ(x;ϕ) ▷ fθ: debiased model, gϕ: biased model
2: for t = 1, 2, · · · , T do
3: Draw a mini-batch B =

{
(x(i), y(i))

}B

i=1
from D

4: for i = 1, 2, · · · , B do

5: ω
(i)
x ←

L(x(i), y(i);ϕ)

L(x(i), y(i);ϕ) + L(x(i), y(i); θ)

6: x
(i)
adv ← argmax

x̃(i):=x(i)+ϵ

[
L(x̃(i), y(i);ϕ)− λ · L(x̃(i), y(i); θ)

]
▷ Adversarial attack using PGD [10]

7: ω
(i)
adv ← β ·

(
1− ω

(i)
x

)
8: end for

9: Rg(ϕ)←
1

B

B∑
i=1

Lg(x
(i), y(i);ϕ)

10: ϕ← ϕ− η∇ϕRg(ϕ) ▷ Update gϕ

11: Rf (θ)←
1

B

B∑
i=1

ω(i)
x · L(x(i), y(i); θ)+

1

B

B∑
i=1

ω
(i)
adv · L(x

(i)
adv, y

(i); θ)

12: θ ← θ − η∇θRf (θ) ▷ Update fθ
13: end for



B. Sensitivity Analysis
We analyzed the impact of hyper-parameters of BiasAdv using the BFFHQ dataset. Specifically, we investigated the

impacts of λ in Eq. (3) of the manuscript, the size of the adversarial perturbation ||ϵ||, the number of attack steps S,
and the weights of adversarial images β by varying the values to λ ∈ {0.25, 0.5, 0.75, 1}, ||ϵ|| ∈ {0.1, 0.3, 0.5, 0.7, 0.9},
S ∈ {1, 3, 5, 7, 9}, and β ∈ {0.5, 1, 1.5, 2}, respectively. For all experiments, we applied BisAdv to LfF [11] and evaluated
the AVERAGE and CONFLICTING accuracies (%). We ran three independent trials and reported the mean and the standard
deviation. Figure 1 summarizes the results. Overall, BiasAdv demonstrated reliable and robust performance regardless of
the hyper-parameter choices. In particular, BiasAdv significantly improved the baseline performance (gray dashed line) in
all cases, suppporting the effectiveness of BiasAdv. The best performance was achieved when λ = 0.5, ||ϵ|| = 0.3, S = 5,
and β = 0.5, respectively.
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Figure 1. Impact of hyper-parameters of BiasAdv. We plot the AVERAGE and CONFLICTING accuracies (%) on the BFFHQ dataset
with different hyper-parameter choices.



C. Qualitative Results
In Figure 6 of the manuscript, we presented Grad-CAM [14] of the test set images of the BFFHQ dataset. To demonstrate

the consistency of our results, we present more qualitative results in Figure 2. The results clearly support our claim that
applying BiasAdv contributes to learning more generalizable representations, attending on discriminative regions for the
target class (age), yet neutral from the bias attribute (gender).
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Figure 2. Grad-CAM [14] comparison of ablation models. We analyze the class activation maps of the test set images on the BFFHQ
dataset.



D. Experimental Details
This section provides further details of our experimental setup. We first provide a detailed explanation of the datasets used

in our experiments in Section D.1. Then, we describe the implementation details in Section D.2. In Section D.3, we present
the detailed settings of the input corruptions used in the analysis on model robustness (Table 6 of the manuscript).

D.1. Datasets

In this work, we evaluated the proposed method on four benchmark datasets: CIFAR-10C [6], BFFHQ [6], BAR [11], and
MetaShift [7]. For a fair and meaningful comparison with the existing methods, we evaluated the proposed method under
the unified experimental setup following the previous state-of-the-art methods of each dataset. For CIFAR-10C and BFFHQ,
we used the datasets provided in the official repository of DFA [6]. While in DFA, only the accuracy of bias-conflicting
samples was reported for BFFHQ, we measured both AVERAGE and CONFLICTING accuracies on the entire unbiased test
set. In the original setup of BAR, the training set consisted only of bias-guiding samples while the test set consisted only of
bias-conflicting samples. In our experiments, we set the ratio of bias-conflicting samples in the training set to p ∈ {1%, 5%},
following IRMCon-IPW [13]. To this end, we randomly selected 17 and 94 bias-conflicting samples from the test set and
moved them to the training set. The BAR dataset is available in the official repository of IRMCon-IPW. For MetaShift, we
used “Cat vs. Dog”, a subset of MetaShift for evaluating subpopulation shifts, and followed the default settings, which is
available in the official repository of MetaShift.

D.2. Implementation

Table 1, 2, 3, and 4 summarize the full list of implementation details for experiments on CIFAR-10C, BFFHQ, BAR, and
MetaShift, respectively.

• fθ and gϕ: We used PyTorch [12] for implementation. For all datasets, we used the same ResNet-18 [3] architecture for
both fθ and gϕ. For BAR and MetaShift, we started learning from the pre-trained weights on ImageNet [1], following
the prior works [7, 11]. Except for the experiments on BAR and MetaShift, we trained the models from scratch. For
ERM + BiasAdv and LfF + BiasAdv, we trained gϕ with the GCE [15] loss to amplify the reliance on the biased
features. The GCE hyper-parameter q = 0.7 was simply taken from the original paper [15].

• BiasAdv: To generate adversarial images, we employed PGD [10] as the default attacker for all experiments. The
hyper-parameters of BiasAdv (i.e., λ in Eq. (3) of the manuscript, the size of the adversarial perturbation ||ϵ||, the
number of attack steps S, and the weights of adversarial images β) were determined empirically (see Section B).

• Training details: To apply BiasAdv to JTT and LfF, we used the codes provided by the authors, and the training
hyper-parameters, such as batch size, epoch, learning rate, and weight decay, were mainly selected according to the
settings of [6, 9, 11]. For JTT, we used grid-search to choose the training epoch of gϕ and the up-sampling parameter
Nup. When applying Biasadv, all the training details, except the hyper-parameters of BiasAdv, were maintained the
same for a fair comparison. During training, input images were augmented with random crop and horizontal flip
transformations following the convention. Throughout all the experiments, we used Adam [5] optimizer and applied
StepLR for learning rate scheduling.



Table 1. Implementation details for experiments on the CIFAR-10C dataset.

Module Name ERM + BiasAdv JTT + BiasAdv LfF + BiasAdv

fθ

Architecture ResNet-18 ResNet-18 ResNet-18
Pre-trained False False False
Loss CE CE CE
Epoch 200 50 200

gϕ

Architecture ResNet-18 ResNet-18 ResNet-18
Pre-trained False False False
Loss GCE (q = 0.7) CE GCE (q = 0.7)
Epoch 200 20 200

BiasAdv

Attacker PGD PGD PGD
λ 1 1 0.5
||ϵ|| 1 0.5 0.5
S 5 5 5
β 2 1 1

Training

Nup - 50 -
Batch size 128 128 128
Learning rate 1e-3 1e-3 1e-3
Weight decay 1e-4 1e-4 1e-4
Optimizer Adam Adam Adam
Scheduler StepLR (40/0.5) StepLR (10/0.5) StepLR (40/0.5)

Table 2. Implementation details for experiments on the BFFHQ dataset.

Module Name ERM + BiasAdv JTT + BiasAdv LfF + BiasAdv

fθ

Architecture ResNet-18 ResNet-18 ResNet-18
Pre-trained False False False
Loss CE CE CE
Epoch 150 50 150

gϕ

Architecture ResNet-18 ResNet-18 ResNet-18
Pre-trained False False False
Loss GCE (q = 0.7) CE GCE (q = 0.7)
Epoch 150 9 150

BiasAdv

Attacker PGD PGD PGD
λ 0.5 1 0.5
||ϵ|| 0.3 0.5 0.3
S 5 5 5
β 0.5 1 0.5

Training

Nup - 20 -
Batch size 64 64 64
Learning rate 1e-4 1e-4 1e-4
Weight decay 1e-4 1e-4 1e-4
Optimizer Adam Adam Adam
Scheduler StepLR (30/0.5) StepLR (10/0.5) StepLR (30/0.5)



Table 3. Implementation details for experiments on the BAR dataset.

Module Name ERM + BiasAdv JTT + BiasAdv LfF + BiasAdv

fθ

Architecture ResNet-18 ResNet-18 ResNet-18
Pre-trained True True True
Loss CE CE CE
Epoch 20 20 20

gϕ

Architecture ResNet-18 ResNet-18 ResNet-18
Pre-trained True True True
Loss GCE (q = 0.7) CE GCE (q = 0.7)
Epoch 20 10 20

BiasAdv

Attacker PGD PGD PGD
λ 1 1 0.5
||ϵ|| 0.1 0.1 0.3
S 9 3 7
β 1.5 0.5 0.5

Training

Nup - 10 -
Batch size 64 64 64
Learning rate 1e-3 1e-3 1e-3
Weight decay 1e-4 1e-4 1e-4
Optimizer Adam Adam Adam
Scheduler StepLR (10/0.5) StepLR (10/0.5) StepLR (10/0.5)

Table 4. Implementation details for experiments on the MetaShift dataset.

Module Name ERM + BiasAdv JTT + BiasAdv LfF + BiasAdv

fθ

Architecture ResNet-18 ResNet-18 ResNet-18
Pre-trained True True True
Loss CE CE CE
Epoch 10 1 10

gϕ

Architecture ResNet-18 ResNet-18 ResNet-18
Pre-trained True True True
Loss GCE (q = 0.7) CE GCE (q = 0.7)
Epoch 10 1 10

BiasAdv

Attacker PGD PGD PGD
λ 1 0.5 1
||ϵ|| 0.5 0.7 0.5
S 3 1 3
β 0.5 1.5 0.5

Training

Nup - 10 -
Batch size 32 32 32
Learning rate 2e-5 2e-5 2e-5
Weight decay 1e-4 0 1e-4
Optimizer Adam Adam Adam
Scheduler - - -



D.3. Input Corruptions

This section describes the detailed setup of the input corruptions used in the experiments presented in Table 6 of the
manuscript. To make corrupted input, we used imgaug [4], a python library for image augmentation, following [8]. Specif-
ically, we considered eight input corruptions that were not used for training: Gaussian, Salt & Pepper, Cutout, Dropout,
Rotation, Perspective, JPEG-compression, and Gaussian blur. Figure 3 illustrates the resulting images for each corruption on
the image from the BFFHQ dataset. The detailed settings for each corruption are listed below.

• Gaussian: We added Gaussian noise to an image. For each pixel, the noise was sampled from a normal distribution
N (0, s), where s was sampled per image and varies between 0 and 0.01*255.

• Salt & Pepper: We replaced 0.1% of all pixels in an image with the Salt & Pepper noise.

• Cutout: We randomly replaced two random rectangle areas of each image with grayish pixels. The size of each
rectangle was set to 20% of the input image size. For more details, please refer to [2].

• Dropout: We dropped 0 to 5% of all pixels by converting them to black pixels. Specifically, we applied Coarse
Dropout [4] that leads to random rectangular areas being dropped.

• Rotation: We rotated images by a random value between -30◦ and 30◦. Empty pixels due to rotation were filled with
symmetrical padding.

• Perspective: We applied random four point perspective transformations to images. Specifically, we used a random
scale between 0.05 and 0.15 per image, where the scale is roughly a measure of how far the perspective transformation’s
corner points may be distanced from the image’s corner points.

• JPEG-compression: We removed high frequency components in images via JPEG-compression with a compression
strength between 80 and 95 (randomly and uniformly sampled per image).

• Gaussian blur: We blurred each image with a Gaussian kernel with a random sigma s that was sampled per image
and varied between 1 and 3.

Original

Gaussian Salt & Pepper Cutout Dropout

Rotation Perspective Gaussian 

blur

JPEG-

compression

Corrupted images

Figure 3. Examples of input corruptions used in the experiment. We visualize the original image and the example results of eight input
corruptions: Gaussian, Salt & Pepper, Cutout, Dropout, Rotation, Perspective, JPEG-compression, and Gaussian blur. For more details,
please refer to imgaug [4].
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