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1. Theoretical Analysis
1.1. Information Bottleneck

In this section, we explain our method from the information bottleneck perspective. The analysis points out that our method
constructs an information bottleneck through actionlet to discard irrelevant information and retain information relevant to
downstream tasks.

We solve this unsupervised learning problem from the perspective of information bottleneck [9], which generalizes mini-
mal sufficient statistics to the representations that are minimal (less complexity) and sufficient (better fidelity). The informa-
tion bottleneck considering mutual information with a Lagrangian relaxation can be represented as follows:

LIB = −I[zik; ziq] + βI[zik; z̄], (1)

where zik = (gk ◦ SAFP ◦ fk)(Xi
k) is the extracted feature by the actionlet region, ziq = (gq ◦GAP ◦ fq ◦MATS)(Xi

q) is the
online output, z̄ = (gk ◦GAP ◦ fk)(X̄i) is the feature of average motion X̄, and β is the Lagrange multiplier, which controls
the weight between the irrelevant information discarded and the semantic information retained. We need to minimize this loss
function to obtain the best encoder. We construct the bottleneck by the average motion so that static information is filtered
and only motion information is extracted.

To be specific, we assume that the motion sequence can be decoupled into two parts, the static region Si
tv and the motion

region Mi
tv . And these two parts are relatively independent. For example, in hand raising, the hand is the motion region,

while areas such as the legs are static regions. The features of the motion region are important for action recognition. Static
regions contain less information and are more similar, so static regions of different actions can be represented using the same
feature.
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where z̄ = Si
tv⊙hi

q because we assume that static regions share the same information. Therefore, when the loss is minimized,
we have:

Ai
tv = Mi

tv. (3)

That is, through our training process, this information bottleneck loss is continuously reduced. And as a result, the actionlet
we choose will be closer and closer to the motion region, and finally we get a decoupled representation of the static and
motion regions.

Next, we further analyze the details of our optimization process to reduce this information bottleneck loss.

1.2. Alternating Optimization Algorithm for Information Bottleneck

To solve for the above loss, we apply an alternating optimization algorithm in the training. The mutual information
between zik and z̄ is first minimized by partial linearization. Then, we maximize the mutual information between zik and ziq
by gradient descent.
Partial Linearization for Actionlet Localization. To reduce the mutual information I[zik; z̄], we need to find the part of the
data that differs most from the static anchor. Therefore, after we calculate the difference of the two features zik and z̄, their
gradients are calculated as the neuron importance weights αi

c:

∆hi
ctv =

∂(−sim(zi, z̄))

∂hi
ctv

,

αi
c =

1

T × V

T∑
t=1

V∑
v=1

σ(∆hi
ctv),

(4)

where σ(·) is the activation function. We approximate the neural network with a linear subspace in the feature neighborhood
by computing the gradient. With the activation function, we filter the features that contribute negatively to the difference,
and these are the static regions that are similar to the average motion. Then we perform a weighted combination of forward
activation maps and the neuron importance weights:

Ai
tv = σ

(
C∑

c=1

αi
ch

i
ctv

)
Gvv, (5)

where σ(·) is the activation function and Gvv is the adjacency matrix of skeleton data for importance smoothing. This is
because the forward activation maps show patterns of different regions extracted by the network. large activation values
mean that a specific motion pattern is extracted. And large neuron importance weights represent positive contribution of this
pattern to the difference. Thus the two are multiplied to obtain the regions in the sequence with positive contribution to the
difference. Therefore, the regions where the mutual information I[zik; z̄] is reduced is considered as the actionlet.
Contrastive Learning for Forward Activation Map Enhancement. To increase the mutual information I[zik; z

i
q], we

employ similarity mining to optimize contrastive learning:

LKL(p
i
q,p

i
k) = −pi

k logp
i
q,

pi
q = SoftMax(sim(ziq,M)/τq),

pi
k = SoftMax(sim(zik,M)/τk),

(6)



where sim(ziq,M) = [sim(ziq,m
j)]Mj=1, which indicates the similarity between feature ziq and other samples in M.

This similarity mining loss is a constraint for the mutual information:
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When the temperature coefficient τk tends to 0, the similarity mining tends to be the InfoNCE loss:
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where exp(sim(ziq, z
i
k)/τq) = p(zik|ziq)/p(zik) and exp(sim(ziq,m

j)/τq) = p(mj |ziq)/p(mj).
Minimizing the similarity mining loss is equivalent to maximizing the mutual information (I[zik; z

i
q]) [4, 7]:
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)

]
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(9)

Meanwhile, only the features of the actionlet region are used in the offline output. This causes the online encoder to
increase the activation of features consistent with the actionlet region and decrease the activation of features in other regions.
This enables the regularization of the forward activation map. The regions that are strongly correlated with the actionlet are
selected to be updated as actionlet, as well as regions in the actionlet that are less correlated are filtered out.

2. Implementation Details
2.1. Network Architecture

Following [5], we employ 3s-SkeletonCLR as our backbone. This algorithm adopts momentum mechanism [3] and
utilizes multi-view data to learn more distinctive feature representations. There are three branches that input different views
of skeleton data, joint, motion and bone data. The encoder f(·) of each branch is based on ST-GCN [10] with hidden units
of size 256. The ST-GCN model includes 9 layers of spatial-temporal graph convolution operators (ST-GCN units). The first
three layers have 16 channels for output. The next three layers have 32 channels for output. The last two layers have 64
channels. And the last layer has 256 channels for output. The temporal kernel size is set to 9 for each layer. The ST-GCN
units apply the Resnet mechanism and randomly dropout the features with the probability of 1/2 to avoid overfitting. The
strides of the 4-th and the 7-th temporal convolution layers are set to 2 for pooling. Besides, a global pooling is performed to
obtain 256 dimension features. The projection head for the self-supervised task applies a multilayer perceptron with 2 fully
connected layers to project features from 256 to 128 dimensions.

The memory bank M is set to 8192 × 128, where 128 is the dimension of features, and 8192 is the number of stored
negative samples. The output vector is normalized by L2-norm.



2.2. Training Strategy

Here we introduce the details of unsupervised, semi-supervised, transfer learning, and supervised learning. Through
comprehensive experiments, we can fully demonstrate the superiority of our method and obtain solid conclusions.

1) Self-Supervised Pretraining. We utilize contrastive learning to train the online encoder fq(·) by gradient back propaga-
tion. We train the network for 400 epochs in total and the learning rate is set to 0.1. To perform MoCo [3] for pretraining, we
train 100 epochs and set the learning rate to 0.1. Pre-training is to provide a suitable initialization for actionlet selection. We
employ InfoNCE loss to optimize contrastive learning:

LCL = − log
exp(sim(ziq, z

i
k)/τ)

exp(sim(ziq, z
i
k)/τ) +K

, (10)

where ziq = gq(fq(X
i
q)) and zik = gk(fk(X

i
k)). K =

∑M
j=1 exp(sim(ziq,m

j)/τ) and τ is a temperature hyper-parameter.
fq(·) is an online encoder and fk(·) is an offline encoder. gq(·) is an online projector and gk(·) is an offline projector. The
offline encoder fk(·) is updated by the momentum of the online encoder fq(·) by fk ← αfk + (1 − α)fq , where α is a
momentum coefficient. mj is the negative sample, stored in memory bank M. sim(·, ·) is the cosine similarity.

Then we continue to train 300 epochs using similarity mining loss. The learning rate is set to 0.1 and decreases to 0.01 at
the 250th epoch. The similarity mining loss is as follows:
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k logp
i
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pi
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where sim(ziq,M) = [sim(ziq,m
j)]Mj=1. Through the first stage of pre-training, the network extracts diverse motion pattern

features. In the second stage, these motion patterns are used to generate more accurate actionlet regions.

2) Linear Evaluation. The unsupervised setting evaluates the feature representation by a linear evaluation mechanism. The
linear evaluation mechanism applies a linear classifier to the online encoder fq(·) with frozen pretrained weights to classify
the features extracted from it to evaluate the feature representation and utilizes the action recognition accuracy as a measure
of the quality of the representation. We train for 100 epochs with learning rate set to 3.

3) KNN Evaluation. The features extracted from the trained encoder fq(·) are classified using a k-nearest neighbor (KNN)
classifier without trainable parameters. In all KNN results, K = 20 and temperature = 0.1. Based on these results, we can
evaluate learning ability of the encoder.

4) Supervised Learning. In the supervised learning setting, after pretraining on the encoder fq(·), we finetune the entire
network (the encoder fq(·) and classifier ϕ(·)) using complete training data for 300 epochs. The learning rate is set to 0.1.

5) Semi-Supervised Learning. With both labeled and unlabeled data, semi-supervised learning can use the structure of
unlabeled data to obtain better generalization performance. After self-supervised pretraining, we apply labeled data to jointly
train the classifier ϕ(·) for 300 epochs. The learning rate is set to 0.1. We test with 1% and 10% of labeled data respectively.
These label data are obtained by random sampling.

6) Transfer Learning. To explore the generalization ability, we evaluate the performance of transfer learning. In transfer
learning, we exploit self-supervised task pre-training on the source data. Then we utilize the linear evaluation mechanism to
evaluate the performance on the target dataset. To evaluate the transferability of learned features, we pretrain on NTU xsub
dataset [8] and performs linear evaluation on PKUMMD part I dataset [6] and PKUMMD part II dataset [6]. We train the
classifier ϕ(·) for 100 epochs.

7) Unsupervised Action Segmentation. For unsupervised action segmentation, we finetune the classifier ϕ(·) with the
frozen encoder fq(·) for 300 epochs. We pretrain on NTU xsub dataset [8] and performs linear evaluation on PKUMMD part
II dataset [6]. To obtain dense features, we implement pooling only for the spatial domain, while keeping the features in the
temporal domain. For comparison, we calculate Accuracy (ACC.), Mean Accuracy (MACC.), Mean Intersection over Union
(mIoU) and Frequency Weighted Intersection over Union (FWIoU) as metrics.



Table 1. Comparison of action recognition results under KNN eval-
uation with joint stream.

Models NTU 60 xview NTU 60 xsub

AimCLR [2] 71.0 63.7
SkeleMixCLR [1] 72.3 65.5
ActCLR 78.0 66.6

Models NTU 120 xset NTU 120 xsub

AimCLR [2] 48.9 47.3
SkeleMixCLR [1] 49.3 48.3
ActCLR 52.6 49.0

Table 2. Comparison of action recognition results with semi-
supervised learning approaches on NTU 60 dataset.

Models xview xsub

1%:
3s-CrosSCLR [5] 50.0 51.1
3s-AimCLR [2] 54.3 54.8
3s-SkeleMixCLR [1] 56.2 55.9
3s-ActCLR 65.6 64.8

10%:
3s-CrosSCLR [5] 77.8 74.4
3s-AimCLR [2] 81.6 78.2
3s-SkeleMixCLR [1] 84.7 81.3
3s-ActCLR 85.8 81.7

Figure 1. KNN evaluation result curves for different training
epochs on the NTU 60 xview dataset.

Figure 2. Curve of KNN evaluation results for different bank sizes
on the NTU 60 xview dataset.

3. Additional Results
3.1. More Comparison Results

1) KNN Evaluation. In the KNN evaluation mechanism, the fixed encoder fq(·) extracts features without trainable parame-
ters. We adopt action recognition accuracy as a measurement. Compared with other methods in Tables 1, our model shows
superiority on these datasets.

2) Semi-Supervised Learning. Table 2 displays the action recognition accuracy on the NTU datasets. We achieve better
performance than state-of-the-art supervised learning methods. It shows that our method facilitates action recognition by
extracting information required for downstream tasks. Our method exceeds SkeleMixCLR by 9.4% on xview and 8.9% on
xsub for NTU60 dataset with 1% training samples. In the semi-supervised setting, this is a tremendous improvement. With
10% training data, we also have a satisfactory improvement in our approach.

3.2. More Ablation Results

1) Analysis of Different Epochs. As shown in Fig. 1, we show the performance comparison of KNN under different epochs.
As the training progresses, the accuracy rate becomes higher and higher. This indicates that the network is increasingly
concerned with the semantic patterns of motion. Therefore, the forward activation map is more accurately localized to the
region of motion. The selection of our actionlet is also more accurate. Our method consistently outperforms the comparison
method under all epochs. This proves the effectiveness of our approach.



Figure 3. Heat map of skeleton joints and action labels.
[20, 3, 2, 1, 0] are trunk indexes, [8, 9, 10, 11, 23, 24] are left hand
indexes, [4, 5, 6, 7, 21, 22] are right hand indexes, [16, 17, 18, 19]
are left leg indexes and [12, 13, 14, 15] are right leg indexes.

Figure 4. Heat map of skeleton frames and action labels. We per-
form 4-fold downsampling in the temporal domain.

2) Analysis of Different Sizes of Memory Bank. Fig. 2 shows the effect of different size of memory bank on the accuracy
of KNN recognition. As the memory bank increases, the accuracy rate keeps improving and then drops. This is because as
the memory bank increases, more and more epochs are needed for training. Therefore a large bank is not sufficiently trained
at the current epoch. At a size of 8192, the accuracy achieves its maximum. Therefore, we finally choose a memory bank
size of 8192.

3) Analysis of Actionlet and Action Labels. To compare the relationship between actionlets and action labels, we count the
actionlet regions selected for each category separately in the spatial and temporal dimensions, as shown in Fig. 3 and Fig. 4.
In the spatial dimension, the importance of different joints is different. Among them, hand movements are often chosen,
indicating that most of the movements required the participation of the hands. For example, Label 10 (reading), Label 11
(writing) and Label 12 (tearing apart paper) all focus primarily on hand movements. And Label 7 (sit down), Label 8 (stand
up) mainly focus on leg movements. And in the temporal domain, the action generally occurs in the middle of the sequence.
Thus, we conclude that multiple actionlet regions may exist for the same action label, representing different modes of this
action. And the same actionlet may also correspond to multiple different action labels.

3.3. More Visual Results

1) Visualization of Average Motion. Fig. 5 shows a visualization of the average motion. There is no significant motion
information in the average motion, and it is used as a background. However, because there are so many hand movements in
the samples, there is still a tendency for the average movement to lift the hand. Therefore, this average motion represents
a semantic-free state. Instead, we do not use the average feature as the semantic-free anchor because we consider that the
average feature may be out-of-distribution. Also because our encoder is robust to transformations such as rotation, there is
no need to prepare multiple average motions as anchors.

2) Visualization of Actionlet. The actionlet, shown in Fig. 6, selects the joints where the motion mainly occurs. The joints
with motion of the actionlet can change as the action is performed, so the actionlet is spatio-temporal. For example, in the
action “throw”, first the raised right hand is attended to. Then as the action proceeds, the left hand also begins to be selected.
In the action of standing up, the actionlet area is mainly focused on the period of rising.



Figure 5. Visualization of the average motion. The average motion sequence shows no obvious action and is therefore a static anchor.

(a) Throw

(b) Standup

(c) Drink

Figure 6. Visualization of the actionlet. The yellow joints are the actionlet. Our method can decouple the motion region and the static
region to obtain the actionlet region accurately for the data under different transformations and of different views.
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