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This appendix presents further analysis of the limita-
tions, implementation details, and extends the experimental
section presented in the main manuscript.

1. Limitations. In Section 1, we discuss the limitations
of the proposed method.

2. Implementation Details. We provide network archi-
tecture of AdaM in Section 2.

3. Datasets and Evaluation Metrics. The statistics of
VM [6] and CRGNN [10] datasets, and the definitions
of evaluation metrics are provided in Section 3.

4. Additional Experiments. Further experiments, abla-
tion studies, and more qualitative evaluation are pre-
sented in Section 4.

1. Limitations
The goal of this study is to provide a reliable matting

framework for dynamic real-world videos. Despite its com-
petitiveness in benchmark datasets and a variety of complex
real-world videos, our method has some limitations. As
shown in Figure 1, lighting on stages tends to cast shadows
or reflections, and our model also generates alpha mattes for
the reflection associated with the foreground person. How-
ever, lighting can be predictable in some cases. The model
can be trained further with an arbitrary illumination con-
dition for maintaining high-fidelity alpha details and being
robust to dynamic lighting environments.

2. Implementation Details

2.1. Network architecture of AdaM

We describe the detailed network architecture of AdaM
in this section. Our model consists of an off-the-self seg-
mentor S, an encoder Φ, a Fg/Bg structuring network Ξ, and
a decoder Ψ. We denote that It is the frame at time t; F t is
the feature set of It, where F t = {f t

1/2, f
t
1/4, f

t
1/8, f

t
1/16};

m0
s is the initial mask estimated by the segmenter S; Kt and

Figure 1. Limitation of AdaM.

V t are Key and Value at time t; K̂
t

and V̂
t

f/b are stored
Key and Fg/Bg embedded Value; mt, αc,t, and αf,t are the
mask, coarse alpha matte, fine-grained alpha matte outputs
of the decoder; mt

d is the downsized mask of mt; Ef and
Eb are learnable foreground and background embeddings.
We summarize the basic steps of AdaM in Algorithm 1.

Algorithm 1 AdaM

Input: Sequence of frames I0, I1, I2, ..., IT−1

Initialize: Extract features F0 = Φ(I0) and obtain initial seg-
mentation mask m0

s = S(I0); Given f0
1/16 and m0

s, initialize

K̂
0
= [K0], and V̂

0

f/b = [V 0
f/b] by Eq. 1 and 6 (main paper)

for t = 0, 1, 2, ..., T − 1 do
• Extract features: F t = Φ(It); Zt = f t

1/16

• Obtain Qt, Kt, and V t by Eq. 1 in the main paper
• Propagate Fg/Bg: Z′t = Ξ(Qt, K̂

t
, V̂

t

f/b)

• Decode outputs: mt, αc,t, αf,t = Ψ(Z′t, f t
1/8, f

t
1/4, f

t
1/2)

• Embed Fg/Bg: V t
f/b = V t + (mt

dEf + (1−mt
d)Eb)

• Update K̂
t+1

: K̂
t+1

= concat(K̂
t
,Kt)

• Update V̂
t+1

f/b : V̂
t+1

f/b = concat(V̂
t

f/b, V
t
f/b)

• Discard oldest Kt
′

and V t
′

f/b w.r.t the limitation criteria
end for



Encoder. MobileNetV2 [9] is used as our backbone. Fol-
lowing [1, 2, 4, 7], we modify the last block of our back-
bone using convolutions with a dilation rate of 2 and a
stride of 1 to increase feature resolution. For each video
frame, the encoder network extracts features at 1/2, 1/4,
1/8, and 1/16 scales with different levels of abstraction
(F 1/2, F 1/4, F 1/8, F 1/16 with feature channels of 16, 24,
32, and 1280, respectively.) The low-resolution feature
F 1/16 is fed into the transformer to model the foreground
and background more efficiently. To reduce the computa-
tional complexity of the transformer network, the channel
of the low-resolution feature is reduced from 1280 to 256
using a 1x1 convolution layer. The final feature channel of
F 1/16 is 256.

Fg/Bg Structuring Network. The transformer in Fg/Bg
Structuring Network consists of three layers with a hid-
den size of 256D. The transformer encoder consists of al-
ternating layers of multiheaded self-attention (MSA) and
MLP blocks. Residual connections and layernorm (LN)
are applied after every block. The MLP contains two fully-
connected layers with a GeLU non-linearity.

Decoder. Our decoder contains four upscaling blocks and
two output blocks. In each upscaling block, the output fea-
tures from the previous upscaling block and the correspond-
ing features from the skip connection are concatenated. The
concatenated features are passed through a layer of 3×3 con-
volution, Batch Normalization and ReLU activation. Fi-
nally, a layer of 3×3 convolution and a bilinear 2x upsam-
pling layer are applied to generate output features. The fea-
ture channels at 1/16, 1/8, 1/4, 1/2 scales are 256, 128, 128,
and 32, respectively.

We employ a two-stage refinement to refine alpha mattes
progressively. The model first produces a Fg/Bg mask and
a coarse alpha matte at 1/4 scale of the original resolution at
the first output block, then predicts a finer alpha matte at full
resolution at the second output block. In specific, after the
first two upscaling blocks, the first output block takes the
feature at 1/4 of the original resolution from the second up-
scaling block, and passes them through two parallel layers
of 3×3 convolutions, producing a 2-channel Fg/Bg predic-
tion mp and a 1-channel coarse alpha matte prediction αc

p.
The second output block produces the final alpha matte at
the original resolution. After the fourth upscaling block, the
second output block takes the final feature map at the origi-
nal resolution and passes it through two additional layers of
3×3 convolution, Batch Normalization and ReLU to obtain
the final alpha matte at the original resolution.

3. Datasets and Evaluation Metrics
3.1. Datasets

VideoMatte240K. The VideoMatte240K (VM) dataset [6]
consists of 484 videos. A total of 240,709 frames are col-
lected in the dataset. The average number of frames per
clip is 497.3. The longest clip has 1,500 frames, and the
shortest clip has 124 frames. RVM [7] split VM dataset
into 475/4/5 video clips for training, validating and testing.
The training set is converted into SD and HD sets for differ-
ent training stages. The VM benchmark set is constructed
by compositing 5 VM test videos onto 5 different static im-
ages and 5 different videos with motion backgrounds [7].
In evaluation, the testing set is converted into VM 512×288
and VM 1920×1080 sets. To ensure a fair comparison, we
use the same training, validation, and test sets created by
RVM. Sample video frames are shown in Figure 2.

Figure 2. Sample video frames from the VM test set.

CRGNN. The CRGNN-R [10] dataset consists of 19 real-
world videos for evaluation. Annotations are made every
10 frames at a 30 fps frame rate, which adds up to 711 la-
beled frames. In this experiment, we do not train MOD-
Net [5], RVM [7] and AdaM on the CRGNN training data.
All three models are directly evaluated on the CRGNN-R
test set. Sample videos frames are shown in Figure 3.

Figure 3. Sample video frames from the CRGNN-R test set.



3.2. Evaluation metrics

Following previous methods, the accuracy of video
matting is measured by the Mean of Absolute Differ-
ence (MAD), Mean Squared Error (MSE), spatial Gradient
(Grad) [8] and Connectivity (Conn) [8] errors. The tempo-
ral consistency of alpha matte predictions is evaluated using
dtSSD [3]. The definitions of these metrics [3, 8] are sum-
marized below.

Let N , M denote the number of frames and the number
of pixels per frame, respectively. For pixel i of frame t, let
αt
i denote the transparency value of the video matting under

consideration and let α∗t
i denote the ground truth. Then
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where ∇αt
i and ∇α∗t

i are the normalized gradients of the
alpha mattes at pixel i that we compute by convolving the
mattes with first-order Gaussian derivative filters.

Connectivity =
∑
t

∑
i

(φ(αt
i,Υ)− φ(α∗t

i ,Υ))p, (4)

where φ measures the degree of connectivity for pixel i with
transparency αi to a source region Υ. More details can be
found in [8].
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To make the tables more readable, all MAD, MSE, Gradi-
ent, Connectivity, and dtSSD values are scaled by 103, 103,
10−3, 10−3, and 102, respectively.

4. Additional Experiments
4.1. Learnable embeddings Ef and Eb

Figure 4 illustrates the visual representations before and
after training. Ef and Eb are vector embeddings used to
incorporate Fg/Bg information into Value V . E ∈ R1×C ,
where C is the channel size of V . C is set to 256 in the
model with MobileNetV2 backbone. Ef and Eb are initial-
ized randomly.

4.2. Self-update mechanism

We present an example here to illustrate the self-update
mechanism. Figure 5 shows a challenging dark and fast-

Figure 4. visualizations of learnable embeddings.

moving video scene where the segmenter generated an ini-
tial mask with some flaws. There are 5 person segmenta-
tions detected. The masks cover unwanted backgrounds;
some parts of the hands are not segmented. The hair buns
are missing as their color resembles that of the background.
We observe that AdaM also produces some matting defects
in early frames. However, AdaM is capable of refining sub-
sequent masks that are adaptively feedbacked to enhance
matting accuracy. For example, two hair buns appear grad-
ually.

Figure 5. An illustration of the self-update mechanism.

4.3. Bi-directional inference for offline scenarios

AdaM processes video frames in a causal manner in or-
der to preserve real-time capabilities. Here, we examine an
offline matting scenario in which we store the Fg/Bg fea-
ture information gathered during the forward pass and then
process the sequence in reverse through time. Without ad-
ditional training, we observe that bi-directional inference
leads to performance improvement as shown in Table 1. The
advantage of bi-directional inference is that it allows com-
prehensive observation of video data through both forwards
and backwards passes.

VM 1920×1080 MAD ↓ MSE ↓ Grad ↓ dtSSD ↓
Online (forward) 4.61 0.46 6.06 1.47

Offline (bi-direction) 4.57 0.43 5.92 1.43

Table 1. Bi-directional inference (MobileNetV2 model w/o HD).



Model Stage 1 Stage 2 Stage 3 Alternating training in Stage 2 MAD ↓ MSE ↓ Grad ↓ dtSSD ↓
(a) ✓ 4.85 0.57 7.88 1.60
(b) ✓ ✓ 4.63 0.43 6.15 1.45
(c) ✓ ✓ ✓ 4.61 0.46 6.06 1.47
(d) ✓ ✓ ✓ ✓ 4.42 0.39 5.12 1.39

Table 2. Effect of different training strategies. All models are evaluated on VM 1920×1080 set.

Model Stage 1 Stage 2 Stage 3 Alternating training in Stage 2 MAD ↓ MSE ↓ Grad ↓ dtSSD ↓
(b) ✓ ✓ 8.07 4.17 22.30 6.48
(c) ✓ ✓ ✓ 7.13 3.05 17.96 5.76
(d) ✓ ✓ ✓ ✓ 5.94 2.79 16.61 5.45

Table 3. Influence of different training strategies. The models are evaluated on CRGNN-R 1920×1080 set.

Model mp αc
p αf

p MAD ↓ MSE ↓ Grad ↓ dtSSD ↓
(e) ✓ 5.65 0.89 8.27 1.68
(f) ✓ ✓ 4.74 0.48 6.68 1.51
(g) ✓ ✓ ✓ 4.61 0.46 6.06 1.47

Table 4. Effect of different model outputs. The models are evaluated on VM 1920×1080 set.

4.4. Influence of training strategies

As discussed in the implementation details (Section 4.2
of the main paper and Section 3.2 in the supplementary),
our training pipeline includes three stages. In the second
stage, we train our model alternately on VM SD data (odd
iterations) and video segmentation data (even iterations) to
prevent overfitting.

In this experiment, we evaluate the influences of dif-
ferent training stages and the alternating choice. The re-
sults are reported in Table 2. To evaluate the effectiveness
of different training strategies, we ablate the other stages
and training choice step by step for a controlled evaluation
within our framework. We draw several conclusions from
the results.

First, we train our integrated model on the segmentation
data at stage 1 to obtain better pre-trained weights for initi-
ating the matting task. As shown in the Table 2 (a) and (b),
the model with both stages 1 and 2 performs better than the
model with stage 2 only. When enabling alternating training
in Model (c), we observe there is no significant performance
difference in VM dataset. The objective of alternating train-
ing is to prevent the network from overfitting to synthetic
data, so that the network will be able to generalize more
effectively. To validate its impact, we further test Model
(b) to (d) on CRGNN-R dataset. As shown in Table 3, the
model with alternating training (Model (c)) performs better
on CRGNN-R dataset. For example, the MAD drops from
8.07 to 7.13. It shows that the alternating training strategy
actually helps with model performance and generalization.
As shown in Table 2 and 3, the last row (Model (d)) supports
that our choice of integrating all three stages and alternating

training improves results and achieves better performance.

4.5. Impact of model outputs
Section 3.4 of the main manuscript presents our loss

functions, summarized below. Our model predicts a Fg/Bg
mask mp, a coarse alpha matte αc

p, and a fine-grained alpha
matte αf

p . The first output block in the decoder generates
mp and αc

p, while the second output block produces αc
p.

The overall loss function L is:

L = ωmLm(mp)+ωc
α(Lα

l1(α
c
p) + Lα

lap(α
c
p))

+ωf
α(Lα

l1(α
f
p) + Lα

lap(α
f
p)), (6)

where ωm, ωc
α, and ωf

α are loss weights.
Here, we consider three variants to study the effects asso-

ciated with the generation of Fg/Bg mask mp, coarse alpha
matte αc

p, and fine-grained alpha matte αf
p .

Variant I: the intermediate output of the first output block
is disabled. In this case, the overall loss function becomes:

L =ωf
α(Lα

l1(α
f
p) + Lα

lap(α
f
p)), (7)

Variant II: the network predicts a Fg/Bg mask mp as the
sole intermediate output of the first output block. The sec-
ond block output is unchanged.This results in the following
overall loss function:

L = ωmLm(mp)+ωf
α(Lα

l1(α
f
p) + Lα

lap(α
f
p)), (8)



Variant III: the first and second outputs remain the same.
The overall loss function is represented by Equation 6,
which is the same as Equation (13) in the main manuscript.

We evaluate the performance of these three model vari-
ants and report the results in Table 4. Model (e) shows the
result of disabling the first output block. In this case, the
network could convert the final alpha matte prediction into
a Fg/Bg mask and update Fg/Bg information in the Fg/Bg
structuring network with the mask. As discussed in the
main manuscript, an alpha matte is represented by a float
value between 0 and 1. In the case of an incorrect alpha
matte prediction, a direct conversion will produce Fg/Bg
mask errors, which will propagate across frames. A notable
performance loss can be observed when comparing Model
(e) and (g).

In Variant II, no coarse alpha matte prediction is pro-
duced in the first output block. The second output block di-
rectly produces the alpha matte prediction. In Variant III, by
producing an intermediate output of a coarse mask, we can
constrain the coarse alpha matte prediction in the first out-
put block and refine it gradually in the second block rather
than predicting an alpha matte directly. This would allow
the second output block to focus on refining the details af-
ter the intermediate alpha matte had provided the coarsely
defined areas. Progressive refinement is also to prevent the
model from performing unexpectedly when it takes a com-
plex video input during inference. As shown in Table 4,
Model (g) yields the best performance. With the super-
vision of the total intermediate output, the model benefits
from better localized foreground areas and more discrimi-
native features derived from different stages, thus realizing
its full potential.

4.6. Qualitative evaluation

In this section, we present additional qualitative results:

1. Figure 6 illustrates the comparison results on the
CRGNN real-video datasets [10]. The results show
the proposed method is able to produce more accurate
foreground matting results.

2. Figure 7 shows three comparison samples of the chal-
lenging video footage released in RVM’s GitHub [7].
The comparisons show AdaM’s strength in real-world
environments. Our method is able to yield reliable
matting results with fewer artifacts.

3. Figure 8 presents another example of temporal con-
sistency comparison. Over time, our model produces
more consistent and coherent results.

4. Figure 9 illustrates a series of test experiments con-
ducted on real-world YouTube videos. The video clips
are used to evaluate the robustness of the proposed al-
gorithm in real-world scenarios. They demonstrate a
variety of challenging scenarios, such as fast human

motion, camera zooming in and out, rapid camera mo-
tion, low light conditions, and cluttered backgrounds.
These examples demonstrate AdaM’s competitiveness,
suggesting it can provide reliable video matting and
achieve great generalizability.



Input MODNet RVM AdaM

Figure 6. Comparisons of our model to MODNet [5] and RVM [7] on CRGNN-R test set.

Input MODNet RVM AdaM

Figure 7. Comparisons of our model to MODNet [5] and RVM [7] on Footage clips released on RVM’s GitHub [7]

t t+ 5 t+ 10 t+ 15 t+ 20

(a) Input.

(b) MODNet.

(c) RVM.

(d) AdaM.
Figure 8. Temporal consistency comparisons on a real-world video crawled from Youtube.



Input MODNet RVM AdaM

Figure 9. Comparisons of our model to MODNet [5] and RVM [7] on challenging real-world videos from YouTube.
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