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Figure S1. Qualitative comparisons between CNN and ViT archi-
tecture as well as clstoken and avgtoken for WSSS task.

A. More Analysis about GradCAM-CLIP

Pretrained CLIP models include two architectures, i.e.,
ResNet-based and ViT-based. It is noteworthy that Grad-
CAM is not only applicable to CNN-based architecture but
also work on vision transformer. In our experiments, we
find that the ResNet-based model suffers from the discrimi-
native part domain problem heavily.In contrast, CAMs gen-
erated by ViT tend to cover more parts of objects. The qual-
itative and quantitative results can be found in Fig. S1 and
Tab. S1, respectively. We adopt CLIP-pretrained ViT-B-16
in all our experiments.

Besides, ViT [4] tends to use an extra class token to get
classification logits and compute the loss. An alternative
is to perform average pooling on remaining tokens. The
classification performances of the two methods tend to be
similar in previous works. However, when applying Grad-
CAM to CLIP, we find that CAMs generated by these two
methods are somewhat different. The latter method can lo-
calize objects more completely and accurately, as is shown
in Fig. S1. We suppose that the classification task is image-
level, yet localization is pixel-level or region-level. The
clstoken contains semantic information of the whole image
and focuses on the patches that contribute more to it, while
the average value of remaining tokens could treat each to-
ken equally. The latter is more suitable for dense predic-

Model Initial CAA refined Shaprness

RN50 38.2 - 0.019
ViT-clstoken  43.8 62.4 0.021
ViT-avgtoken  58.6 70.8 0.004

Table S1. Quantitative comparisons between CNN and ViT archi-
tecture as well as clstoken and avgtoken for WSSS task.

Category  Sentence-level Feature-level CAM-level
bird 76.7 76.7 76.6
chair 48.4 48.4 47.7

person 63.2 63.8 65.8

tvminotor 57.2 57.2 53.9

all classes 70.8 70.8 70.6

Table S2. Comparison of different synonym fusion strategies on
PASCAL VOC 2012 train set.

tion tasks, especially for the multi-label setting. Results in
Tab. S1 demonstrate the superiority of the average pooling
token for the WSSS task. Furthermore, the sharpness of
avgtoken is significantly smaller than clstoken. It implies
that avgtoken can attend to more classes rather than make
one class prominent. The results verify the rationality of our
proposed metric as well.

B. Comparisons of Different Synonym Fusion
Strategies

We can perform synonym fusion in different stages.
Without loss of generality, we divide it into three types:
1) sentence-level (before inputting into text-encoder), 2)
feature-level (after text-encoder), 3) CAM-level (after CAM
generation). We perform synonym fusion on 4 categories
and compare the three strategies in Tab. S2. The results
remain similar and merely varied slightly among these ap-
proaches for each category as well as all categories. Since
the last two methods require multiple encode processes for
each synonym, we adopt the time-efficient sentence-level
fusion strategy in our experiments.
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Figure S2. Effect of A for the quality of generated CAMs on PAS-
CAL VOC 2012 and part of COCO 2014 train set.

Confidence  [0.5,0.8] [0.8,0.95] [0.95,1.0]
Frequency(%) 0.78 1.43 97.75
I 0.7 0.8 0.95
mloU 73.7 73.6 73.8

Table S3. The distribution of confidence and mloU of final seg-
mentation with different 1« on VOC 12.

C. Hyper-parameter Selection for \

In CAA module, we generate a class-aware mask for
MHSA in the transformer. A parameter A is used to binarize
the CAM and generate some bounding boxes. In this part,
we investigate the effect of A on PASCAL VOC 2012 and
COCO 2014 train set. Since the amount of COCO train set
is tremendous, we only select the first 2000 images for re-
search. We vary the threshold from 0 to 0.8 with an interval
of 0.1. The results in Fig. S2 indicate that the best thresh-
old varies on different datasets. We suppose that COCO is
more complex and contains more objects in an image than
PASCAL VOC on average. Therefore, a stricter threshold
is required to identify regions belonging to the target class.
In our experiment, we set A to 0.4 and 0.7 for VOC and
COCO, respectively.

D. Hyper-parameter Selection for ; in CGL

In the experiments, we found most pixels are confident
enough after dense CRF postprocessing [5]. We calculate
the confidence distribution on VOC (VOC’s original ig-
nored percentage is about 5.4%). Results in Tab. S3 indi-
cate that only a small minority of pixels (mainly near object
boundaries) have confidence lower than 0.95, and  doesn’t
affect the segmentation performance remarkably. There-
fore, we set 1 to 0.95 in our experiments.

E. Training Details of DeepLabV2

For VOC, images are randomly scaled to [0.5, 0.75, 1.0,
1.25, 1.5] and cropped to 321x321. The batch size is set
to 10, and iteration is 20k as default. For COCO, we use
strong augment following [7]. Images are randomly scaled
to [0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0] and 481x481 are
cropped. The batch size and the number of training itera-
tions are set to 5 and 100k, respectively. The initial learning
rate is 2e-4 for imagenet-pretrained model and 2.5e-5 for
COCO-pretrained model, with the polynomial learning rate
decay Iriter = lripi(l — miﬁ;ﬁ)”, where v = 0.9. We
set u = 0.95 to ignore unconfident pseudo labels. Balanced
cross-entropy loss is adopted for COCO training as in [6,7].
For testing, we adopt a multi-scale strategy and dense CRF
to post-process with default hyper-parameters in [3].

F. Detailed Setting of Time and Memory Effi-
ciency

We compare our proposed framework with classical Ad-
vCAM [6], another language-supervised work CLIMS [§]
and ViT-based work MCTFormer [9] in term of time and
memory. All the experiments are conducted on a TITAN
RTX GPU with 24 GB memory. We use their open-source
code and follow the default procedure. When applying
dense CRF, 20 num-workers are adopted for multiprocess-
ing. The maximum memory occurs during the affinity net-
work training stage, which is about 18GB for both PSA [2]
and IRN [I]. With only 2GB memory, our training-free
method could generate pseudo masks for PASCAL VOC
2012 train aug set (with 10582 images) within 1 hour. Note
that adopting multiple GPUs or multiprocessing can further
speed up this process.

G. Background Set

We define 25 class-related background categories for
VOC, including {ground, land, grass, tree, building, wall,
sky, lake, water, river, sea, railway, railroad, keyboard,
helmet, cloud, house, mountain, ocean, road, rock, street,
valley, bridge, sign}. For COCO, we simply remove
{sign, keyboard} since these categories have been defined
in COCO categories.

H. More Qualitative Results

In Fig. S3, we provide more qualitative results of
our generated pseudo labels and corresponding confi-
dence maps on PASCAL VOC 2012 and MS COCO 2014
datasets. We can observe that our proposed framework pro-
duces satisfactory segmentation results. It is effective in
both simple and complex scenes.
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Figure S3. More visualizations on PASCAL VOC 2012 and MS COCO 2014 datasets.
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