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1. Experimental Details
1.1. Implementation Details

The hyperparameters and training settings for the FA-
VAE experiments on different datasets are in Table 1. The
training parameters for the CAT model on the CelebA
dataset are in Table 2.

1.2. Model Details

The full model of FA-VAE model is in Figure 1. The
number of blocks N here corresponds to the number of
channel multipliers in Table 1. For instance, the channel
multiplier of the FA-VAE model on the CelebA-HQ dataset
is [1, 1, 2, 2, 4], then N = 5. In all the FA-VAE models for
all datasets, we use 4 FCMs as illustrated in Figure 1. FCMs
all have the architecture illustrated in Figure 1. FCMs with
residual connection in Figure 5 in the paper have the same
architecture as the FCMs with convolutional connection as
illustrated in Figure 1. FCMs with attention mechanism
have the architecture illustrated in Figure 5 in the paper.
Due to memory limitation, the last FCM block near the out-
put layer is replaced with FCM with residual connection
architecture.

The CLIP model 1 used in the CAT model for training
text-to-image generation on CelebA-HQ-MM [11] has text
condition embedding dimension of 768.

2. Additional Results
2.1. Reconstruction

Ablation Studies In paper, we give the quantitative and
qualitative results of ablation studies when varying the ar-
chitecture of FCM and settings for the SL and DSL, as in
Table 2 and Figure 7. Figure 2 gives additional visualization

1https://github.com/openai/CLIP

results of the ablation studies with the frequency spectrums
provided as well. We see that the FCM with convolution
architecture shows better alignment on the frequency space
compared to the original image’s spectrum (Ours w/ DSL*
conv) than the residual (Ours w/ DSL* Residual) or atten-
tion architecture (Ours w/ DSL* Attention). When compar-
ing different kernel sizes, Ours w/ DSL* µ = 3 to Ours w/
DSL* µ = 15, we see that the frequency spectrum of µ = 3
contains more features on the higher frequency spectrum
while a larger kernel size tends to smoothe more the images
and we see less high frequency features being captured.

Reconstruction on ImageNet Figure 3 gives additional
reconstruction results on the ImageNet dataset [1]. All im-
ages are from the validation dataset. We see that FA-VAE
shows better reconstruction in local details, such as the
flower petals in Figure 3 row 1 column 6 than the base-
line VQ-GAN [2] and DALL-E [9]. As discussed in the
paper, DALL-E and VQ-GAN tend to produce images that
are over-smoothed because the high-frequency spectrum is
not accurately reconstructed.

Reconstruction on different input resolution. In Fig-
ure 4, we vary the input resolutions of the input image
and reconstruct using FA-VAE and the baseline model VQ-
GAN. Note that the models used are all trained with image
resolution of (256 × 256) on the ImageNet dataset with a
downsampling factor of 16. Figure 4 shows that when the
input resolution increases, the reconstruction improves as
well, our method FA-VAE shows also better reconstruction
in the local details, such as the zebra patterns. As motivated
in the introduction of the paper, higher downsampling fac-
tor leads to more compressed codebook embeddings. For
instance, an image of resolution (256 × 256), when down-
sampled 16 times, the latent feature map will be of resolu-
tion (16 × 16), which also means that one codebook em-
bedding in a (16× 16) feature map would encode an image
patch of (16 × 16). However, if the downsampling fac-
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Dataset f Channel Multiplier dropout attn resolution FFL weight α DSL Weight β Disc weight |C| nz

CelebA-HQ [6] 16 [1,1,2,2,4] 0.0 [16] 1.0 0.01 0.75 1024 256
ImageNet [1] 4 [1,2,4] 0.0 [] 1.0 0.01 0.75 8192 3
ImageNet [1] 16 [1,1,2,2,4] 0.0 [16] 1.0 0.01 0.75 16384 256
FFHQ [7] 16 [1,1,2,2,4] 0.0 [16] 1.0 0.01 0.75 2048 256

Table 1. Hyperparameters and FA-VAE’settings for codebook training.
Dataset nlayer ne nheads dim head image encoded dim txt cond embed dropout

CelebA-HQ [6] 24 1536 16 64 16 768 0.1

Table 2. Model parameters for text-to-image generation on CelebA-HQ-MM [11] of CAT model.
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Figure 1. Entire FA-VAE model.

tor is 8, then one codebook embedding would encode an
image patch of (8 × 8) because there are more codebook
embeddings in a feature map of (32 × 32). Thus, a higher
downsampling factor leads to more condensed information
encoded within a codebook embedding.

Similarly, if we increase the input resolution from (256×
256) to (512 × 512), then the encoded feature map would
go from (16× 16) to (32× 32). While the image semantics
remain the same regardless of the input image resolution,
a higher resolution leads to a larger encoded feature map,
which means that more local details are preserved and thus
the reconstruction quality improved with higher input im-
age resolution. In our explanation, we are simplifying the
details for the sake of abstractness, such as during the de-
coding phase, the convolution kernels will merge features
from all codebook embeddings.

2.2. Generation

Figure 5 gives additional text-to-image generation re-
sults on the CelebA-HQ dataset [11] of our method CAT

compared with LAFITE [12]. The top-k used is 1024, top-
p is 0.95 and the temperature is 1.0 for all the generation
results in the paper and the supplement. As mentioned in
the background section of the paper, LAFITE uses Style-
GAN [8] as the decoder which has better decoding capa-
bility than VQ-GAN in the face domain because StyleGAN
has layers to encode fine-grained image semantics. This
also comes with a limitation which is that StyleGAN is hard
to scale to large datasets because the number of decoder lay-
ers cannot increase beyond a dozen of layers.

Figure 5 shows that the images generated by LAFITE
sometimes exhibit unnatural looks. For instance, the sec-
ond image of second row, the face generated looks rigid and
the image texture is similar to the oil painting. While CAT
is able to generate more naturalistic images than LAFITE.
Note that existing evaluation metrics fall short at captur-
ing the “naturalistic” criterion of the generated image [3,5].
For instance, FID measures the similarity between the latent
features of the original and generated images.



original VQ-GAN VQ-GAN+FFL Ours* Ours**

Ours w/ SL Ours w/ DSL* conv Ours w/ DSL* Residual Ours w/ DSL* Attention Ours w/ DSL* 𝜇 = 3

Ours w/ DSL* 𝜇 = 5 Ours w/ DSL* 𝜇 = 9 Ours w/ DSL* 𝜇 = 11 Ours w/ DSL* 𝜇 = 15

Figure 2. Visualization on CelebA-HQ dataset for the ablation studies in Table 2 of the paper. Ours∗ is FA-VAE model with FCM and
FFL, no DSL. Ours∗∗ is FA-VAE model with FCM with SL without gaussian filters. DSL∗ is DSL with non pair-wise sigmas. VQ-GAN
is from [2]. VQ-GAN + FFL is with FFL from [4].



original VQ-GAN 𝑓: 4 OURS 𝑓: 4 DALL-E 𝑓: 8 VQ-GAN 𝑓: 16 OURS 𝑓: 16

Figure 3. ImageNet reconstruction. VQ-GAN with downsampling factor f = 4 is from [2], VQ-GAN with f = 16 is from [10]. DALL-E
is from [9]. The labels for each row of images are: goldfish, tiger, gray whale, Egyptian cat, African elephant, papillon.



original VQ-GAN (256x256) OURS (256x256)

VQ-GAN (512x512) OURS (512x512)

original VQ-GAN (256x256) OURS (256x256)

VQ-GAN (512x512) OURS (512x512)

Figure 4. Reconstruction using inputs of different resolutions. The default resolution used for training is (256× 256). When augmenting
the input resolution to (512 × 512), reconstruction quality improves. The models used are with downsampling factor of 16. The images
are fox squirrel and zebra from ImageNet dataset.



“The woman has big lips and is wearing heavy makeup.”

“She wears lipstick. She is smiling, has wavy hair, and brown hair.”

“She has brown hair, and straight hair and wears earrings. She is young.”

“This man has big lips, oval face, arched eyebrows, receding hairline, and big nose.”

Figure 5. Text-to-image generation on the CelebA-HQ-MM dataset [11]. The first row is our method CAT, the second row is the baseline
LAFITE [12]. From row 3-5, the left 3 images are from CAT and the right 3 images are from LAFITE.
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