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In this supplementary material, we provide more details
that are excluded from the main submission due to space
limitations. We present more visualization results in Section
A to better show the effectiveness of our approach, more im-
plementation details are introduced in Section B and some
additional experimental results are presented in Section C.

A. Visualized Results and Analysis

In this section, we provide more visualized results on
HCSTVG-v2 validation set [S7] to show the rationality of
our design and the effectiveness of the proposed method.

In Figure S1, we present a visualization of the attention
map A’ which is employed in the static-to-dynamic infor-
mation transmission block to guide the learning of the dy-
namic stream. As shown in the first two samples, the atten-
tion maps can attend to the objects that may match the query
text, hence it can guide the dynamic stream to focus on mo-
tions in the region that may contain the target object. For
the last sample, when the target man in the red stripe was
not in the scene, the attention weights are low. When the
target men appeared, the attention weights became much
higher. The visualization of the attention maps shows the
rationality of the design of our static-to-dynamic informa-
tion transmission block.

In Figure S2, we show more comparison results with
our baseline model without the cross-stream collaboration
block. In the first two samples, the baseline model predicts
the wrong temporal time span since it cannot understand the
static visual cues described in the text like “red stripe” and
“white clothes”. With the proposed collaboration block, the
dynamic stream can attend to the region that may contain
the target object and neglect other regions (as shown in Fig-
ure S1), thus it can correctly predict the target time span.

*Corresponding author.

For the third sample, in the baseline model, the static stream
failed to understand the concept of “blindfolded” and thus
it produces incorrect spatial grounding prediction. By em-
ploying the proposed cross-stream collaboration block, the
model can reason the target person according to the action
“smell” so that it can accurately localize the target object.
For the last sample, the baseline model can correctly lo-
calize the target person according to the description “at the
door”, but it fails to track the target man in the latter frames
in which the door is out of the scene. In our model, the
query mixing operation in the dynamic-to-static informa-
tion transmission block helps the model track the target per-
son. The above samples further demonstrate the effective-
ness of the proposed cross-stream collaboration block.

In Figure S3, we show more prediction results of our ap-
proach, including both successful cases and failure cases.
To show samples with different viloU more intuitively so
that we can get a better sense of the evaluation metric, here
we select to present samples of vIoU around 0.8, 0.5 and 0.3
from HCSTVG-v2 validation set [S7]. As shown in the first
sample in Figure S3, visually, our prediction is very close
to the ground truth and the vIioU metric is 80.3%. In the
second sample in which the vIoU is 50.2%, our predicted
temporal boundary of action “sit down” is not that accurate
while the predicted spatial bounding boxes are quite precise.
In the last sample, the text query is long and it consists of
a composition of several actions, which is quite challenging
thus our model only achieves a vloU of 29.1%. To show
the visualization results better, we also provide a video-
version visualization (the file named “visualization.mp4” in
the same folder) in which we present several samples with
different vloUs (including all samples shown in Figure S3)



Query: The tall boy comes to the dining table and sits down.

Figure S1. A visualization of the attention maps used in the static-to-dynamic information transmission block. For each case, we present
the original frames and the visualized attention maps in the first row and the second row, respectively. The attention weights are normalized

by the maximum attention values of all frames.

B. Further Implementation Details
B.1. Hyper-parameters

During training, we pre-extract video features with the
video encoder (i.e., slowfast network [S2]) and save them to
disk to improve training efficiency, thus we didn’t finetune
the video encoder during training. We set the learning rate
as le~® for the image encoder and the language encoder,
and le=* for the rest of the model. We train our model
with AdamW optimizer [S5] with a weight decay of 1e~*
We follow MDETR [S4] to use exponential moving aver-
age (EMA) and set the decay weight as 0.999 for HCSTVG
datasets [S7] and 0.99997 for VidSTG dataset [S11]. It cost
about 2 days to train our model on 8 Nvidia RTX A6000
GPUs for VidSTG dataset using a batch size of 8. Different
from previous state-of-the-art approaches TubeDETR [S§]
and Augmented 2D-TAN [S6] which use complicated data

augmentation strategies, we didn’t use any data augmen-
tation for simplicity. For the static stream, we uniformly
sample T frames as input, and the inputted frames are re-
sized to have a shorter side less or equal to Ngport pixels
and a longer side less or equal to 1.8 - Ngport pixels. We
set Ts = 48, Nghore = 320 for HCSTVG datasets [S7]
and Ts = 64, Ngport = 448 for VidSTG dataset [S11]
(since it contains some long videos with small target ob-
jects). For the dynamic VL stream, we first pad the inputted
frames to a square shape and then resize it to a resolution
of 256x256. We follow the sampling strategy in 2D-TAN
[S10] to sample the pre-extracted features to have a fixed
temporal length 7y of 16 and 64 for HCSTVG [S7] and
VidSTG datasets [S11], respectively. In the cross-stream
collaboration blocks, we use bilinear interpolation to align
the spatial resolution of feature maps outputted by different
streams. For aligning the temporal resolution in the collab-



Query: The man in the red stripe goes to the sofa and turns.
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Query: The man in the blue hat walks to the man in the white clothes and stops.
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Query: The blindfolded man smells the handkerchief in the opposite woman’s hand.
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Query: The man at the door goes to the man holding the sword.
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Figure S2. Visualization of the predicted tube of our approach (yellow), our approach without cross-stream collaboration block (red), and
ground truth (green). In the first two samples, our baseline without collaboration block predicts the wrong temporal time span. In the last
two samples, our baseline without collaboration block predicts wrong spatial bounding boxes. (Best viewed zoomed in on screen.)

oration blocks, we use temporal mean pooling and tempo-
ral replication for static-to-dynamic and dynamic-to-static
information transmission blocks, respectively. In the static-
to-dynamic information transmission block, in order to re-
duce the influence of using a too-sharp (caused by softmax)
attention map A’ to guide the dynamic stream, we re-scale
the query for calculating the attention maps by multiplying
a factor « (it is similar to use a different temperature in soft-
max). « is set as 1.0 and 0.1 for VidSTG dataset [S11] and
HCSTVG dataset [S7], respectively.

B.2. Detailed Formulation of L,,

During training, we follow previous work [S9] to add
a temporal attentive loss L, for accelerating the conver-
gence. It encourages the model to predict a high matching

score for those frames/clips inside the target temporal span.
Specifically, we employ an FC on O} to predict the match-
ing score S for the t-th sampled frame in the static
stream. And we employ an MLP on Fy[t] to predict the
matching score S'f P for the ¢-th clip in the dynamic stream.
Then L, is formulated as:

Lia = Ap L™ 4\ L2, (1)
Ts Sframe
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Query: The woman in the green skirt picks up the cup, drinks, puts down the cup and turns to look at the man next to her. (vioU=29.1%)

Figure S3. More visualization of our predicted results (yellow) and ground truth (green). (Best viewed zoomed in on screen.)

Table 1. Experiments on HCSTVG-v2 validation set using differ-
ent pretrain versions of SlowFast.

Pretrain Dataset ‘HLVIOU ‘ vioU@0.3 ‘VIOU@0.5 ‘m,tIOU ‘ m_sloU

AVA [S3] 38.7 65.5 33.8 58.1 | 65.7
Kinetics-600 [S1]| 38.4 64.7 34.2 57.6 | 65.7

Table 2. Experiments on HCSTVG-v2 validation set using differ-
ent loss coefficients.

As| A4 |m_vIoU|vIoU@0.3|vIoU@0.5|m_tloU|m_sIoU
5[0.1) 376 | 633 33.1 | 56.6 | 65.9

501 387 65.5 338 58.1 | 65.7
5(10| 37.1 62.8 29.5 572 | 642
11| 380 64.3 32.6 57.1 | 65.7
20| 1| 38.6 65.6 34.8 579 | 65.7
where m{ ,mg are set as 1 if the ¢-th frame/clip is inside the
f

target temporal time span, otherwise m; , m¢ are set as 0.
Af, Ac are weights for balancing the two losses, they are set
as 0.5 and 1.0, respectively.

C. Additional Experiment Results

Effect of SlowFast pretraining. In our video encoder,
we follow Aug. 2D-TAN [S6] to extract clip-level fea-
tures using a SlowFast [S2] Network. It is pretrained on
AVA dataset [S3] which is a dataset for the relevant spatio-

temporal action localization task. We also conduct experi-
ments on HCSTVG-v2 dataset using the Kinetics-600 [S1]
pretrained SlowFast and results are presented in Table 1. As
shown, the models pretrained on AVA dataset and Kinetics-
600 achieve similar performances, indicating that the per-
formance improvement of our model is not mainly from the
pretraining on AVA dataset.

Effect of loss coefficients. We train our model
with multiple losses and we balance the weights on
L1, Larou, Lig, Lia with loss coefficients A1, Az, Az, A4,
respectively. In our experiments, we keep Aj, Ao consis-
tents with previous works [S4, S8] and mainly tune A3, \4.
The results are summarized in Table 2. We observe that the
model achieves the best m_vIoU score with Ay, = 1 and a
value of \4 that is either too large or too small results in
a significant drop in performance. Moreover, the model is
less sensitive to changes in A3 within the range of [1, 20].

Inference speed. It cost around 0.5s for inferencing a video
around 20s with 5fps sampling rate using a Nvidia 3090
GPU. In our model, the required memory for processing a
video grows linearly as the video duration increases. Thus,
for inferencing very long videos (e.g. several hours), we
have to split the video into some segments due to memory
constraints, which is currently a limitation exists in both our
approach and previous methods. In the future, we will con-
sider developing spatio-temporal grounding methods that
can efficiently localize the target object in long videos with
low memory costs.
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