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In the following supplementary material, we present
more details about our proposed method. Sec. A provides
an illustration of the attention structure and the interac-
tion between attention and RGB and depth map encoders.
We also compare the performances using different atten-
tion sources (i.e., RGB and depth map). Sec. B provides
a comprehensive description of the augmentations used in
contrastive learning. Sec. C provides an illustration of how
we performed pose correction in our work. Sec. D dis-
cusses the stop gradient operation in our attention module
for attention-fused features. Sec. E shows the influence
of data amount on ours and other state-of-the-art methods.
Sec. F provides more visualizations about multi-modal pre-
dictions, and 2D pose predictions.

A. Attention Module

Architecture Suppose fR and fD are a pair of corre-
sponding intermediate feature maps from RGB images and
depth maps respectively. In Fig. a, we provide the detailed
structure of the proposed attention module. This module
is only applied at the end of downsampling layers of ED

and ER to produce attention-activated features, as shown
in Fig. b. The attention is calculated from the depth fea-
ture map fD and applied to itself and the RGB feature map
fR, respectively. With the attention guidance, ER outputs
attention-fused latent feature sF and its original RGB fea-
tures sR. ED outputs self-attended features sD.
RGB Attention vs. Depth Map Attention In Table. a,
we provide the experiment results of using RGB self-
attention and depth map attention to guide the learning of
RGB modality. Both methods use the proposed pre-training
loss with the same encoder and decoder architectures. The
results show that attention from depth map can help RGB
better learn task-relevant information.

B. Augmentation

In this section, we introduce the details of different aug-
mentation strategies for contrastive learning.
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Figure a. Attention module. Attention weights are generated from
fD and are applied to either fD to produce self-attended depth
map features or fR to produce attention-fused RGB features.

Contrastive Learning For contrastive learning, we de-
fine TRGB(·), GRGB(·), TDM(·) and GDM(·) as the texture
and geometric augmentations of the RGB image and depth
map, respectively. Texture augmentations do not affect the
labels, i.e., the hand poses, while geometric augmentations
require the labels or hand poses to be adjusted accordingly.
We list the details below:

1. TRGB(·) consists of colour jitter, grey-scale and ran-
dom erasure.

2. GRGB(·) consists of a rotation of [-180◦,180◦], scale of
[0.8,1] and translation of [-20,20] pixels.

3. TDM(·) consists of random erasure, salt and pepper
noise.

4. GDM(·) consists of a rotation of [-180◦,180◦], scale of
[0.8,1] and translation of [-20,20] pixels.

C. Pose Correction

Here, we introduce the pose correction [5] with a 2D ex-
ample. As shown in Fig. c(a), we have a given template
(solid line) and a prediction (dotted line). For the template,
we have four joints, i.e., r, {ji}i=1:3 from root to leaf, and
three bones {bi}i=1:3. Correspondingly, we have the pre-
dicted joints r̂, {ĵi}i=1:3 and predicted bones {b̂i}i=1:3.
Note that we also define the valid interval for b1 and b2,

1



Depth Encoder

𝑠𝑠𝐷𝐷

𝐸𝐸𝐷𝐷

RGB Encoder 𝐸𝐸𝑅𝑅

𝑠𝑠𝑅𝑅

𝑓𝑓𝐷𝐷

𝑓𝑓𝑅𝑅
𝑠𝑠𝐹𝐹

Figure b. Attention w/ encoders. We illustrate the intermedi-
ate feature maps of RGB and depth map where attention mod-
ules are applied (i.e., downsampling layers with C1,2,3,4,5 =
{64, 256, 512, 1024, 2048}). Note that orange streams are the at-
tention deployment; black streams are depth map feature process-
ing; blue streams are RGB feature processing while green streams
are the attention-fused RGB feature processing.

as shown in the yellow triangle area. We build a local coor-
dinate system for the hand and use the valid interval of each
bone based on the work [4]. Our goal is to register the tem-
plate to the prediction and get registered joints r̄, {j̄i}i=1:3.
In this case, we use a greedy approximation to avoid the
accumulation of endpoint errors and to ensure the feasibil-
ity of the hand pose. As shown in Fig. c(b)-(f): our pose
correction method consists of the following steps:

1. We first align the root to get r̄ by translating r to r̂
(Fig. c(b)).

2. We calculate the transformation of b1 based on the
direction from r̄ to ĵ1, i.e., the grey dotted line in
Fig. c(c).

3. We get registered j̄1 based on the transformation of b1.
We also get the transformation of b2 based on the di-
rection from registered j̄1 to ĵ2, as shown in Fig. c(d).

4. We get registered j̄2 based the transformation of b2. As
the joint angle is valid, no rectification is needed. We
follow by calculating the transformation of b3 based on
the direction from j̄2 to ĵ3, as shown in Fig. c(e).

5. In Fig. c(f), we get registered j̄3 based on the transfor-
mation of b3. Note that the joint angles that exceed a

Figure c. Illustration of pose correction. We use a greedy approxi-
mation to correct the predicted hand pose based on a hand template
to realize bone length and joint angle constraints.

Method STB FreiHAND H3D MVHand
from RGB 16.92 19.51 26.55 20.27
from Depth Map 16.37 19.19 25.94 19.62

Table a. Ablation study for the attention source. We investigate
the attention source for the RGB feature by applying RGB self-
attention or depth map attention to conduct the proposed model
pre-training. The results show that attention maps from depth
maps provide better guidance for RGB than attention maps from
RGB. Bold indicates the best performance.

valid interval are rectified. Therefore, we get complete
registered poses.

D. Stop Gradients

During pre-training, for the attention-fused features, a
stop-gradient operation is added between RGB features and
attention weights to prevent inaccurate RGB features from
degenerating the attention. This is because the attention-
fused features alone are insufficient to fully discard distrac-
tor information that may be present in the features.

As shown in Table b, we compare our pre-trained models
with and without the stop-gradient operation (“w/ SG” ver-
sus “w/out SG”). The results “w/ SG” outperform the results
“w/out SG” for all four datasets. This confirms our hypoth-
esis that the attention from the depth map encoder makes
it easier for the RGB encoder to capture the geometric in-
formation and improve cross-dataset performance. On the
other hand, the abundant non-informative features captured
in the RGB encoder impede the learning of the attention
module.

E. Impact of the Amount of Data

E.1. 3D Keypoint Estimation

Fig. d shows the performance of 3D keypoint estima-
tion using a subset of the training data, from 750 samples
to full samples in each dataset. The mean EPE of models
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Figure d. The performance comparisons for 3D keypoint estimation with fine-tuning on different amount of training data. (a) Mean EPE on
STB testing data with fine-tuning on different amount of STB training data; Our method can achieve impressive improvement at a higher
baseline. (b) Mean EPE on FreiHAND testing data with fine-tuning on different amounts of FreiHAND training data; (c) Mean EPE on
MVHand testing data with fine-tuning on different amounts of MVHand training data. The performance saturation can be seen at 60K
samples on FreiHAND dataset and 20K samples on MVHand dataset. Figure best viewed in colour.
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Figure e. The performance comparisons for 2D keypoint detection with fine-tuning on different amounts of training data. (a) PCK@0.05
on FreiHAND testing data with fine-tuning on different amounts of FreiHAND training data (b) PCK@0.05 on MVHand testing data with
fine-tuning on different amounts of MVHand training data. Figure best viewed in color.

Method STB FreiHAND H3D MVHand
w/out SG 17.22 19.55 26.01 20.17
w/ SG 16.37 19.19 25.94 19.62

Table b. Ablation study for the stop gradient operation during
pre-training. w/ and w/out SG: denotes training with and without
the stop-gradient operation between RGB features and attention
weights respectively. Our full model (“w/ SG”) correctly lever-
ages the depth map modality and generates better representations
for the cross-domain dataset. Bold indicates the best performance.

on the test set generally improves as the amount of train-
ing samples increases. We compare our method with Semi-
Hand on STB as they released their results. As shown in
Fig. d(a), with 750 STB training data, SemiHand shows a
mean EPE decrease from 23.83 mm to 17.31 mm (27.4%
improvement). In contrast, our method benefits from the
proposed pre-training scheme as we can lower the mean
EPE from 19.66 mm to 16.37 mm without using any STB

data. We then further reduce the mean EPE to 13.57 mm
with 750 STB training samples. In total, we can achieve
a 31.0% improvement over 19.66 mm, which is superior to
the 27.4% improvement given by SemiHand. If we use 15K
STB training samples, our method can improve the perfor-
mance by 39.0% (19.66 mm to 11.99 mm), while the perfor-
mance increase of SemiHand is 38.7% (23.83 mm to 14.60
mm). Although our method is less effective than SemiHand
from the aspect of fine-tuning, the improvement is still im-
pressive (from 16.37 mm to 11.99 mm), considering we are
at a higher baseline.

We further show the influence of the amount of train-
ing data on FreiHAND and MVHand in Fig. d(b)-(c).
Our method clearly achieves better performance with more
data. Furthermore, we can see that the performance of our
method starts to saturate at 60K samples on FreiHAND
dataset and 20K samples on MVHand dataset. This phe-
nomenon may be due to the larger pose space in FreiHAND,
while MVHand is constructed from streaming data with
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Figure f. Visualization of two examples before fine-tuning (first
row) and after fine-tuning (second row). From left to right:
RGB images, multi-modal predictions (depth maps, segmentation
masks, poses), attention weights from depth maps, and attention
weights on RGB images. We can obtain better multi-modal pre-
dictions after fine-tuning. Figure best viewed in color.

common poses.

E.2. 2D Keypoint Detection

Fig. e shows the performance comparisons for 2D key-
point detection with fine-tuning on different amounts of
training data. We compare our method with the state-of-
the-art methods, i.e., RegDA [1], CC-SSL [3] and Ani-
malDA [2].

As shown in Fig. e (a), for FreiHAND, our method
and AnimalDA are both at a similar baseline. However,
when using 7.5K samples, we achieve a 12% improve-
ment, which is superior to the 8.9% improvement given
by AnimalDA. Compared to RegDA and CC-SSL with a
lower baseline, even they have an impressive improvement
when starting to fine-tune with real-world data. However,
their PCK@0.05 gaps to our proposed method are con-
stantly larger than 1.7% when using more than 2.5K sam-
ples. Moreover, the performance of our method starts to
saturate at 15K samples while others start to saturate at 5K
samples on FreiHAND. As for MVHand in Fig. e (b), sim-
ilar results can be found, where our method outperforms
other methods by a large margin and all methods exhibit
saturation when using 15k samples in fine-tuning.

Based on these observations, we can conclude that 15K
samples are sufficient for fine-tuning to achieve a stable re-
sult. For convenience, we choose to use 15K samples, the
same size as the STB training set from the FreiHAND and
MVHand training set, during fine-tuning.

F. More Qualitative Results
F.1. Multi-Modal Predictions

In Fig. f, we provide the multi-modal prediction changes
before and after fine-tuning two examples from H3D and

Figure g. 2D pose visualization. We compare our method with
four state-of-the-art methods and highlight the differences be-
tween the predictions and the ground truth poses with red boxes.
Our method can generate more correct predictions. Figure best
viewed in color.

MVHand. It is worth noting that our method can improve
the performance, exhibiting more complete depth maps and
masks, as well as more accurate 2D poses. This verifies the
effectiveness of our proposed fine-tuning strategy.

F.2. 2D Pose Comparisons

In Fig. g, we provide more 2D pose visualizations. The
results show that our method is superior to other state-of-
the-art methods and exhibits good performance on complex
gestures, which are challenging for other methods.
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