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1. More Datasets and Implementation Details
We evaluate the effectiveness of our proposed Deep Fre-

quency Filtering (DFF) for Domain Generalization (DG) on
Task-1: the close-set classification task and Task-2: the
open-set retrieval task, i.e., person re-identification (ReID).
More details about the datasets and our experiment config-
urations are introduced in this section.

1.1. Datasets for Task-1

We use the most commonly used Office-Home [20] and
PACS dataset [20]. Specifically, Office-Home consists of 4
domains (Art (Ar), Clip Art (Cl), Product (Pr), Real-World
(Rw)), each consisting of 65 categories, with an average of
70 images per category, for a total of 15,500 images. PACS
consists of 9991 samples in total from 4 domains (i.e., Photo
(P), Art Painting (A), Cartoon (C) and Sketch (S)). All these
4 domains share 7 object categories. They are commonly
used domain generalization (DG) benchmark on the task of
classification. We validate the effectiveness of our proposed
method for generalization in close-set classification task on
Office-Home and PACS. Following the typical setting, we
conduct experiments on this dataset under the leave-one-
out protocol (see Table 1 Protocol-1 and Protocol-2), where
three domains are used for training and the remaining one
is considered as the unknown target domain.

1.2. Datasets for Task-2

Person re-identification (ReID) is a representative open-
set retrieval task, where different domains and datasets do
not share their label space. We employ existing ReID pro-
tocols to evaluate the generalization ability of our method.
i) For Protocol-3 and Protocol-4, we also follow the leave-
one-out protocols as in [27, 48]. Among the four datasets
(CUHK-SYSU (CS) [40], MSMT17 (MS) [39], CUHK03
(C3) [25] and Market-1501 (MA) [50]), three are selected
as the seen domain for training and the remaining one is
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Table 1. The evaluation protocols. “Com-” refers to combining
the train and test sets of source domains for training. “Pr”, “Ar”,
“Cl”, “Rw” are short for the Product, Art, Clip Art and Real-World
domains in Office-Home dataset [20], respectively. “P”, “A”, “C”,
“S” are short for the Photo, Painting, Cartoon, Sketch domains in
PACS dataset [20], respectively. “MA”, “CS”, “C3”, “MS” denote
Market-1501 [50], CUHK-SYSU [40], CUHK03 [25], MSMT17
[39], respectively. Note that for person ReID, the commonly used
DukeMTMC [53] has been withdrawn by its publisher, is thus no
longer used.

Task Setting Training Data Testing Data

Close-set classification

Protocol-1

Cl,Pr,Rw Ar
Ar,Pr,Rw Cl
Ar,Cl,Rw Pr
Ar,Cl,Pr Rw

Protocol-2

C,P,S A
A,P,S C
A,C,P S
A,C,S P

Open-set retrieval

Protocol-3
CS+C3+MS MA
MA+CS+MS C3
MA+CS+C3 MS

Protocol-4
Com-(CS+C3+MT) MA
Com-(MA+CS+MS) C3
Com-(MA+CS+C3) MS

Protocol-5 Com-(MA+C2+C3+CS)

PRID
GRID
VIPeR
iLIDs

selected the unseen domain data for testing. Differently,
Protocol-3 only adopts the training set of seen domains
for model training while in Protocol-3, the testing set of
the seen domains are also included for training model. ii)
For Protocol-5 in Table 1, several large-scale ReID datasets
e.g., CUHK02 (C2) [24], CUHK03 (C3) [25], Market-1501
(MA) [50] and CUHK-SYSU (CS) [40], are viewed as mul-
tiple source domains. Each small-scale ReID dataset in-
cluding VIPeR [10], PRID [15], GRID [28] and iLIDS [51]
is used as an unseen target domain, respectively. To comply
with the General Ethical Conduct, we exclude DukeMTMC
from the source domains. The final performance is obtained
by averaging 10 repeated experiments with random splits of
training and testing sets.



1.3. Networks

Following the common practices of domain generaliz-
able classification (Task-1) [2, 22, 33, 55] and person ReID
(Task-2) [3, 6, 17, 26], we build the networks equipped with
our proposed Deep Frequency Filtering (DFF) for these two
tasks on the basis of ResNet-18 and ResNet-50, respec-
tively. As introduced in the Sec. 3.4 of our manuscript,
we evaluate the effectiveness of our proposed DFF based
on the two-branch architecture of Fast Fourier Convolution
(FFC) in [5]. In particular, we adopt our DFF operation to
the spectral transformer branch of this architecture. Unless
otherwise stated, the ratio r in splitting X ∈ RC×H×W into
Xg ∈ RrC×H×W and Xl ∈ R(1−r)C×H×W is set to 0.5.
We conduct an ablation study on this ratio in this Supple-
mentary as follows.

1.4. Training

Following common practices [2, 12, 22, 29, 30, 44], we
adopt ResNet-18 and ResNet-50 [11] as our backbone for
Task-1 and Task-2, respectively. Each convolution layer of
the backbone is replaced with our DDF module. Unless
specially stated, we first pretrain the models on ImageNet
[32] then fine-tune them on Task-1 or Task-2, referring to
the common practices [2, 3, 6, 33, 55]. We introduce our
training configurations with more details in the following.

Pre-training on ImageNet. Following the common prac-
tices [11, 16, 41, 43] in this field, we adopt the commonly
used data augmentation strategies including color jittering,
random flipping and center cropping. The input image size
is 224 × 224. We use the SGD optimizer with the base
initial learning rate of 0.4, the momentum of 0.9 and the
weight decay of 0.0001, and perform learning rate decay by
a factor of 0.1 after 30, 60 and 80 epochs. A linear warm-up
strategy is adopted in the first 5 epochs, where the learning
rate is increased from 0.0 to 0.4 linearly. All models are
trained for 90 epochs with the batchsize of 1024.

Fine-tuning on Task-1. The initial learning rate in this
stage is set to 0.001. We train all models on this task us-
ing the SGD optimizer with the momentum of 0.9 and the
weight decay of 0.0001. The batch size is set to 32. Follow-
ing prior works [2, 22, 31, 33], we adopt the data augmen-
tation strategies including random cropping, horizontal flip-
ping, and random grayscale. The input images are resized to
224 × 224. On the PACS dataset [20], we train the models
for 3,500 iterations; and on the Office-Home [37] dataset,
we train the models for 3,000 iterations. The experiment re-
sults on Office-Home have been presented in the main paper
while the results on PACS are placed in this Supplementary
due to the length limitation.

Table 2. Performance (classification accuracy %) comparison
with the state-of-the-art methods under Protocol-2 (i.e., on PACS
dataset) on close-set classification task. We use ResNet-18 as
backbone. Best in bold.

Method Source→Target AvgC,P,S→A A,P,S→C A,C,P→S A,C,S→P
Baseline 77.6 73.9 70.3 94.4 79.1
MMD-AAE [22] 75.2 72.7 64.2 96.0 77.0
CrossGrad [33] 78.7 73.3 65.1 94.0 77.8
MetaReg [1] 79.5 75.4 72.2 94.3 80.4
JiGen [2] 79.4 77.3 71.4 96.0 81.0
MLDG [19] 79.5 75.3 71.5 94.3 80.7
MASF [8] 80.3 77.2 71.7 95.0 81.1
Epi-FCR [21] 82.1 77.0 73.0 93.9 81.5
MMLD [30] 81.3 77.2 72.3 96.1 81.7
Ours 82.2 78.5 72.5 95.5 82.2

Fine-tuning on Task-2. Following the common practices
for domain generalizable person ReID [6, 7, 17, 49], we
adopt the widely used data augmentation strategies, includ-
ing cropping, random flipping, and color jittering. We use
Adam [18] optimizer with the momentum of 0.9 and weight
decay of 0.0005. The learning rate is initialized by 3.5×
10−4 and decayed using a cosine annealing schedule. The
batch size is set to 128, including 8 identities and 16 images
per identity. For the Protocol-3, Protocol-4 and Protocol-5,
the models are trained for 60 epochs on their correspond-
ing source datasets. Similar to previous work [29], the last
spatial down-sampling in the “conv5 x” block is removed.
The input images are resized to 384× 128. Following [12],
we use task-related loss including cross-entropy loss, arc-
face loss, circle loss and triplet loss. And we adopt a gra-
dient reversal layer [9] encouraging the learning of domain-
invariant features.

2. More Experiment Results
In this section, we present more experiment results to

further evaluate the effectiveness of our proposed DFF.

2.1. More Experiments on the Task-1 (PACS)

We further evaluate the effectiveness of our proposed
DFF on another commonly used dataset, i.e., Office-Home
[37], for investigating the domain generalization on the
close-set classification. This dataset contains four domains
(Aritistic, Clipart, Product and Real World) with 15,500
images of classes for home and office object recognition.
Similar to the Protocol-1 on PACS dataset [20], we adopt
a “Leave-One-Out” protocol for the evaluation on Office-
Home where three domains are used for training while the
remaining one is for testing. The experiment results are
shown in Table 2. Our proposed DFF achieves significant
improvements relative to the Baseline model, and outper-
forms the state-of-the-art methods on this dataset by a clear
margin over all evaluation settings. This further demon-



Table 3. Performance comparisons of different frequency trans-
formations. In “Baseline”, we take vanilla ResNet-18/-50 as the
backbone models. “Wavelet (db3)” and “Wavelet (Haar)” denote
the wavelet transforms with the Daubechies3 and Haar filters, re-
spectively.

Method
Source→Target

MS+CS+C3→MA MS+MA+CS→C3 MA+CS+C3→MS
mAP R1 mAP R1 mAP R1

Base 59.4 83.1 30.3 29.1 18.0 41.9
Wavelet (db3) 61.5 83.7 30.7 29.8 18.3 42.2
Wavelet (Haar) 61.1 83.6 30.5 29.7 18.5 42.3
FFT (Ours) 71.1 87.1 41.3 41.1 25.1 50.5

Table 4. Performance comparisons of different dimensions on
which the Fast Fourier Transform (FFT) is performed. “FFT
(CHW)” refers to the models in which FFT is performed across
the height (H), width (W) and channel (C) dimensions. In “FFT
(HW)”, we just perform FFT across the height and width dimen-
sions, i.e., for each feature map independently, which is the default
setting in this paper.

Method
Source→Target

MS+CS+C3→MA MS+MA+CS→C3 MA+CS+C3→MS
mAP R1 mAP R1 mAP R1

Base 59.4 83.1 30.3 29.1 18.0 41.9
FFT (CHW) 59.2 83.0 30.0 28.8 17.5 38.5
FFT(HW) 71.1 87.1 41.3 41.1 25.1 50.5

Table 5. Performance comparisons of our proposed DFF with dif-
ferent ratios. All models are built based on ResNet-18 for Task-1
while ResNet-50 for Task-2.

Ratio
Source→Target

MS+CS+C3→MA MS+MA+CS→C3 MA+CS+C3→MS
mAP R1 mAP R1 mAP R1

0.0 59.4 83.1 30.3 29.1 18.0 41.9
0.25 67.4 84.1 38.1 38.1 22.9 48.4
0.5(Ours) 71.1 87.1 41.3 41.1 25.1 50.5
0.75 70.8 86.8 40.7 40.6 21.0 44.9
1.0 64.2 83.4 29.3 28.1 17.6 40.4

Table 6. Performance comparisons of our proposed DFF with the
corresponding ResNet baselines on ImageNet-1K classification.
“DFF-ResNet-18/-50” denote the ResNet-18/-50 models equipped
with our DFF.

Method Parameters GFLOPs Top-1 Acc.
ResNet-18 11.7M 1.8 69.8
DFF-ResNet-18 12.2M 2.0 72.3
ResNet-50 25.6M 4.1 76.3
DFF-ResNet-50 27.7M 4.5 77.9

strates the effectiveness of DFF.

2.2. More Ablation Studies

Experiments with other frequency transforms. We pre-
liminarily investigate the effectiveness of using other fre-
quency transforms in implementing our conceptualized
DFF. In particular, we replace the Fast Fourier Transform
(FFT) in our proposed scheme by the wavelet transform
with two widely used filters, i.e., db3 and Haar. From the

Table 7. Performance comparisons of our proposed DFF with
the state-of-the-art methods on supervised person ReID. “Base.”
refers to the baseline model.

Model Market-1501(MA) MSMT17(MT)
mAP R1 mAP R1

PCB [35] 81.60 93.80 - -
BoT [29] 85.90 94.50 - -
MGN [38] 86.90 95.70 - -
JDGL [52] 86.00 94.80 52.30 77.20
GASM [13] 84.70 95.30 52.50 79.50
FPR [14] 86.58 95.42 - -
HCTL [47] 81.80 93.80 43.60 74.30
OSNet [54] 84.90 94.80 52.90 78.70
RGA-SC [46] 88.40 96.10 57.50 80.30
CDNet [23] 86.00 95.10 54.70 78.90
Circle Loss [34] 87.40 96.10 52.10 76.90
AMD [4] 87.15 94.74 - -
FIDI [42] 86.80 94.50 - -
MPN-tuple [45] 88.70 95.30 60.10 82.20
ResNet-50 Base. 81.63 93.89 50.84 76.78
DFF-ResNet-50 90.21 96.17 60.21 82.95

experiment results in Table 3, we observe that adopting the
wavelet transform also delivers improvements compared to
Baseline, but is inferior to adopting FFT. This is because the
wavelet transform is a low frequency transformation such
that our proposed filtering operation is performed in a local
space, thus limiting the benefits of DFF.

Design choices of performing FFT. In our proposed
scheme, for the given intermediate feature X ∈ RC×H×W ,
we perform FFT for each channel independently to obtain
the latent frequency representations, as described in the Sec.
3.2 of the main paper. Here, we investigate other design
choices of perform FFT. In the Table 4, we find that per-
forming FFT across H, W, C dimensions leads to perfor-
mance drop compared to Baseline. For the intermediate
feature X ∈ RC×H×W , its different channels correspond
to the outputs of different convolution kernels, which are
independent in fact. Thus, we perform FFT on each chan-
nel of X independently.

Ablation study on the ratio r. We follow the overall ar-
chitecture design of [5] to split the given intermediate fea-
ture X ∈ RC×H×W into Xg ∈ RrC×H×W and Xl ∈
R(1−r)C×H×W along its channel dimension with a ratio
r ∈ [0, 1]. Our proposed filtering operation is only per-
formed on Xg . When setting r = 0, the models degenerate
to the ResNet-18/-50 baselines. Setting r = 1 means that
we perform DFF on the entire intermediate feature X. As
the experiment results in Table 5, we empirically find that
the models with r = 0.5 achieve the best performance, ex-
ploiting the complementarity of features in the frequency
and original spaces.



i-LIDS
VIPeR
PRID

GRID

i-LIDS
VIPeR
PRID

GRID

Baseline Ours

Figure 1. The t-SNE [36] visualization of ReID feature vectors
learned by baseline (left) and our DFF (right) on four unseen target
datasets (GRID, i-LIDS, VIPeR and GRID). Best viewed in color.

2.3. More Visualization Results

We perform t-SNE visualization for the ReID feature
vectors extracted by the baseline model and the model with
our proposed DFF on four unseen datasets. As shown in
Fig. 1, the four unseen target domains distribute more sep-
arately for the baseline model than that of ours. This indi-
cates the domain gaps are effectively mitigated by our pro-
posed Deep Frequency Filtering (DFF).

2.4. Effectiveness on ImageNet-1K Classification

ImageNet-1K [32] classification widely serves as a pre-
training task, providing pre-trained weights as the model
initialization for various downstream task. We present the
effectiveness of our conceptualized DFF on ImageNet-1K
classification to showcase its potentials for more general
purposes. As the results shown in Table 6, our DFF achieves
2.5%/1.6% improvements on the Top-1 classification accu-
racy compared to the corresponding baselines ResNet-18
and ResNet-50, respectively. Note that these improvements
are achieved with the simple instantiation introduced in the
Sec.3.3 of the main body. We believe more effective instan-
tiations of DFF are worth exploring to make DFF contribute
more in a wider range of fields.

2.5. Effectiveness on Supervised Person ReID

In the main body, we target domain generalization and
present the effectiveness of our proposed DFF on domain
generalizable person ReID. In this supplementary material,
we also showcase its potential on improving supervised per-
son ReID. Following the previous works [13, 23, 47, 52, 54]
in this field, we evaluate our DFF on two most widely used
datasets Market-1501 [50] and MSMT17 [39]. Note that
another popular dataset DukeMTMC [53] has been taken
down by its publisher. As shown in Table 7, the ResNet-
50 equipped with DFF significantly outperforms the base-
line model and reaches the SOTA performance on this task.
This demonstrates the proposed DFF is also potentially ben-
eficial for capturing discriminative features. We expect that
it can contribute to more tasks.
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