
[Supplementary] Interventional Bag Multi-Instance Learning
On Whole-Slide Pathological Images

1. Derivation of NWGM Approximation
We will show the derivation of Normalized Weighted

Geometric Mean (NWGM) approximation used in Eq.(7)
in the main paper. In a MIL problem, given the bag feature,
let g(·) be a classifier that calculates logits for the k-way
bag-level classification. The approximation moves the outer
sum into softmax: E[Softmax(g(·))] ≈ Softmax(E[g(·)]).
Without loss of generality, the backdoor adjustment formula
in Eq.(3) can be written as:

P (Y = y | do(X = x)) =
∑
c∈C

Softmax (gy(x⊕ h))P (c),

(A1)
where C denotes the confounder stratifications, gy is the
classifier logit for class y, h = h(x, c) is the feature
concatenated to x (see Eq.(6) in the main paper), and
P (c) is the prior for each confounder. Then, the NWGM
of Eq. (A1) can be achieved as:∑

c∈C

Softmax (gy(x⊕ h))P (c) (A2)

≈ NWGMc∈C (Softmax (gy(x⊕ h))) (A3)

=

∏
c [exp (gy(x⊕ h))]

P (c)∑k
i=1

∏
c [exp (gi(x⊕ h))]

P (c)
(A4)

=
exp (

∑
c gy(x⊕ h)P (c))∑k

i=1 exp (
∑

c gi(x⊕ h)P (c))
(A5)

= Softmax (Ec [gy(x⊕ h)]) , (A6)

where Eq. (A3) follows [1] and Eq. (A4) is the definition
of NWGM. Note that we set g(·) be a linear classifier by
default, which can be written as g(x ⊕ h) = H1x +H2h,
where H1,H2 ∈ Rk×d are learnable weight, d is the dimen-
sion of x and h. Then, in Eq. (A6), the term inner Softmax
can be written as:∑

c
g(x⊕ h)P (c) =

∑
c
(H1x+H2h)P (c) (A7)

= H1x+
∑

c
H2hP (c) (A8)

= g
(
x⊕

∑
c
hP (c)

)
(A9)

where Eq. (A8) is because the feature of x is same for
all confounder c, and we can discard the E over x.
Putting Eq. (A9) into Eq. (A6), we can get the Eq.(7) in
the main paper.

2. More details about feature extractors
Generally, we adopt ResNet18 [5], ViT-small [4], and

CTransPath [12] as feature extractors respectively.
ResNet-18 is a basic and widely-used CNN model in

the community of WSIs. We adopt the ImageNet pre-
trained model officially released by PyTorch (https:
//download.pytorch.org/models/resnet18-
5c106cde.pth). For each instance, ResNet-18 out-
puts the feature of 512 dimension from the penultimate
layer. ViT-small is a typical transformer-based model. We
build upon the visual transformer architecture from [10]
based on the timm library [13]. We adopt the model pre-
trained with MoCo V3’s manner [2]. For each instance,
ViT-small outputs the class token, which is of 384 di-
mension. CTransPath is hybrid CNN-transformer fea-
ture extractor, which combines the ResNet structure and
Swin Transformer blocks [7]. We adopt the model pre-
trained with a semantically-relevant contrastive learning
(SRCL) manner [12], where the positives include augmen-
tation views and multiple similar ones from memory bank
(measured by cosine similarity metric). For each instance,
CTransPath outputs the feature of 768 dimension from av-
erage pooling layer. For ViT-small and CTransPath, they
are self-supervised pre-trained on 9 datasets: UniToPatho,
TissueNet, NCT-CRC-HE, Colorectal cancer, Camelyon16,
TCGA-NSCLC, TCGA-RCC, MIDOG, and CRAG, con-
taining around 15 million unlabeled patches. The pretrained
ViT and CTransPath can be downloaded from https:
//github.com/Xiyue-Wang/TransPath.

3. More details about aggregators
We use DSMIL’s code base for implementation and eval-

uation, and build other models based on their officially re-
leased codes.

• The offical code for ABMIL can be referred to
https://github.com/AMLab-Amsterdam/
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AttentionDeepMIL.

• The offical code for DSMIL can be referred to
https://github.com/binli123/dsmil-
wsi.

• The offical code for TransMIL can be referred
to https://github.com/szc19990412/
TransMIL.

• The offical code for DTFD-MIL can be referred to
https://github.com/hrzhang1123/DTFD-
MIL.

Following their codes, we use the Adam optimizer for
ABMIL and DSMIL with the cosine decay schedule [8].
The bag feature is the attention-weighted sum of instance
features. For TransMIL, Lookahead optimizer [15] is em-
ployed with a weight decay of 1e-5. The bag feature is rep-
resented by the class token. We use the Adam optimizer for
DFTD-MIL with MultiStepLR schedule. The bag fea-
ture is generated by Tier-2. The Interventional training of
stage 3 can be referred to Algorithm 1.

Algorithm 1 Pseudocode of Interventional Training

# Inputs:
# Confounder dictionary C with shape (K, d),
# Features of instances [b_1, ..., b_n], each

with shape (1, d)
# Ground truth Y

# Outputs:
# Bag level prediction Y_hat, Loss L for

optimizing network parameters

# Previous MIL training:
B = aggregator_network([b_1, ..., b_n]) # B is

the bag feature with shape (1, d)
Y_hat = classify_head(B)
L = criterion(Y_hat, Y)

# Interventional training:
B = aggregator_network([b_1, ..., b_n]) # B is

the bag feature with shape (1, d)
B_q = linear1(B) # Projection matrix W_1, B_q

with shape (1, l)

C.requires_grad = False # freeze C
C_k = linear2(C) # Projection matrix W_2, C_k

with shape (K, l)

Alpha = torch.mm(C_k, B_q.T)
Alpha = F.softmax(Alpha / sqrt(l), dim=0) #

Normalize weighted scores
C_ave = torch.mm(Alpha.T, C) # Weighted average,

C_ave with shape (1, d)

B = torch.cat([B, C_ave], dim=1)
Y_hat = classify_head(B)
L = criterion(Y_hat, Y)

4. More results about DTFD-MIL (MaxMinS)
To further verify the effectiveness of IBMIL with base-

line of DTFD-MIL, we switch to “MaxMinS” as the fea-
ture distillation strategy, and provide the results in Tab. 1

Table 1. Results on Camelyon16 dataset.

Feature
Extractor K Precision Recall Accuracy AUC

ResNet

/ 84.55 75.62 79.84 79.17
2 87.54 81.39 84.5 85.06
4 79.04 79.37 79.84 84.77
8 86.16 80.74 83.72 85.11

16 81.44 81.63 82.17 84.44

CTrans

/ 96.39 94.23 95.35 95.15
2 96.95 95.19 96.12 95.75
4 96.48 95.50 96.12 95.95
8 96.48 95.50 96.12 95.95

16 96.48 95.50 96.12 96.00

ViT

/ 93.84 93.24 93.80 94.66
2 95.29 92.31 93.80 94.63
4 95.29 92.31 93.80 94.76
8 94.21 92.93 93.80 94.66

16 95.29 92.31 93.80 94.53

Table 2. Results on TCGA-NSCLC dataset.

Feature
Extractor K Precision Recall Accuracy AUC

ResNet

/ 88.11 88.12 88.10 92.36
2 81.84 91.86 79.52 92.95
4 86.13 85.71 85.71 93.41
8 87.49 85.78 85.71 93.61

16 90.01 89.99 90.00 94.76

CTrans

/ 94.31 94.27 94.29 96.74
2 94.31 94.27 94.29 97.71
4 94.72 93.80 93.81 97.71
8 94.32 94.32 94.29 97.80

16 94.31 94.27 94.29 97.68

ViT

/ 94.29 94.30 94.29 98.15
2 94.77 94.75 94.76 98.17
4 93.86 94.77 93.81 98.19
8 94.77 94.75 94.76 98.22

16 94.77 94.75 94.76 98.26

and Tab. 2. As can be seen, IBMIL can bring consistent
performance boost under different feature distillation strate-
gies, which demonstrates the effectiveness of our proposed
scheme.

5. More Baselines

Comparison with IMIL. IMIL [6] applies instance-level
physical intervention (i.e., MoCo V2 style augmentation)
for robust instance label prediction, while IBMIL is based
on the backdoor adjustment for bag label prediction. To
compare with IMIL, we apply instance-level physical inter-
vention for bag label prediction. As shown in Tab. 3, the
results (i.e., ABMIL+IMIL) are even worse than baseline
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Table 3. The performance with ImageNet pre-trained Res-18.
Methods PRE REC ACC AUC
ABMIL 86.71 81.71 84.50 84.07
ABMIL+IMIL 76.24 73.00 75.97 74.60
ABMIL+IBMIL 88.58 87.14 88.37 90.43
ABMIL+ColorNorm [3] 83.02 79.76 82.17 85.59

(a) (b)

Figure 1. (a) T-SNE visualization. (b) Attention maps.

on Camelyon16, since the strong augmentation achieves the
causal intervention at the cost of affecting the statistical in-
formation in the bag.
Color as A confounder and Experimental Setup. In com-
putational pathology, stain color variation is a common is-
sue causing generalization error. From the causal lens, color
is a kind of bag contextual confounders causing spurious
correlations between bags and labels. Thorough evalua-
tion was conducted on patch-based classification to high-
light this issue and it claims that the conclusions general-
ize to WSI classification as well [9]. We conduct experi-
ments with color normalization [3], the results (i.e., AB-
MIL+ColorNorm) in Tab. 3 achieve better AUC than base-
line. Note that IBMIL still outperforms it as there exist
other confounders in general cases.
Relations to ReMix [14]. Clustering is used in ReMix and
our work but with different implementations and purposes.
In ReMix, clustering is performed at patch-level for each
bag, and the prototypes are used to represent the bag. In our
method, clustering is performed at bag-level, and the proto-
types are used to approximate the confounders for backdoor
adjustment.

6. Qualitative Analysis
T-SNE. In Fig. 1a, we visualize the bag features via t-SNE
and denote the prototypes by stars. We empirically find that
color is abstracted in some clusters. Note that confounders
can be any bag contextual information (e.g., color, texture
or patient-specific patterns). Lacking these attribute labels
hinders us from further analysis. Thus, we will turn to ex-
pert pathologist knowledge for further exploration.
Attention Map. IBMIL is proposed to empower exist-
ing bag MIL methods generally (including non-parametric
ones), thus no explicit constraints are applied to attention.
In Fig. 1b, the attention maps are achieved by subtraction
and binarization between IBMIL and baseline, and we do

find IBMIL pays more attention in tumoral regions in some
cases. A potential improvement is to further incorporate
attention-based interventions [11].
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