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Appendix

A. Author Contributions

All authors have significant contributions on ideas, explo-
rations, and paper writing. Specifically, CHL and TYL led
the research, developed fundamental code for experiments
and organized team efforts. JG led the experiments on gener-
ating high-resolution mesh models. LT led the experiments
on using high-resolution diffusion prior. TT led the experi-
ments on sparse scene representations. XZ and KK led the
experiments in controllable generation. XH conducted the
user study. SF and MYL advised the research direction and
designed the scope of the project.

B. Implementation Details

We follow the implementation details described by
Poole et al. [7] as closely as possible. We refer readers
to the Dreamfusion paper [7] for context and list the major
differences below.

Architectural details. As aforementioned in the main paper,
we adopt a multi-resolution hash grid encoding architec-
ture from Instant NGP [6] instead of using a large global
coordinate-based MLP architecture. We use 16 levels of hash
dictionaries of size 219 and dimension 4, spanning 3D gird
resolutions from 24 to 212 with an exponential growth rate.
We use single-layer MLPs with 32 hidden units to predict
all of RGB color, volume density, and normal, where the
inputs to the MLPs are the concatenated feature vectors from
the multi-resolution hash encoding sampled with trilinear
interpolation (we refer readers to the Instant NGP paper [6]
for more details in this representation). We perform density-
based pruning to sparsify the Instant NGP representation
with an octree structure every 10 iterations. This allows us
to more efficiently render pixels using empty space skipping,
even with 3D points as dense as 1024 samples per ray. We
do not use the contracting reparametrization of unbounded

*†: equal contribution.

scenes from Mip-NeRF 360 [2] as it is not supported by our
sparse representation.

Scene representation. For the coarse neural field repre-
sentation, we use a bounding sphere of radius 2 for our
experiments. We use the softplus activation for the density
prediction and follow Poole et al. [7] to add an initial spa-
tial density bias to encourage the optimization to focus on
the object-centric neural field. We empirically found that
using a linear form of spatial density bias helps stabilize the
optimization, more formally written as

τinit(µ) = λτ ·
(
1− ∥µ∥2

c

)
, (1)

where µ is the 3D location, λτ = 10 is the density bias scale,
and c = 0.5 is an offset scale. Different from DreamFusion,
however, we add this density bias to the pre-activation; as a
result, the post-activation of the density prediction will vary
continuously from softplus(λτ ) to 0 as a function of ∥µ∥2.

Camera and light augmentations. We follow Poole et
al. [7] to add random augmentations to the camera and light
sampling for rendering the shaded images. Differently, (a)
we sample the point light location such that the angular dis-
tance from the random camera center location (w.r.t. the ori-
gin) is sampled from ψcam ∼ U(0, π/3) with a random point
light distance rcam ∼ U(0.8, 1.5), and (b) we use a “soft” ver-
sion of the textureless and albedo-only augmentation such
that various strengths of shading in the rendered images are
seen during optimization. (c) we sample the camera distance
from U(1.5, 2), and the focal length U(0.7, 1.35). When
training with high resolution diffusion prior, we increase the
focal length and sample from U(1.2, 1.8).
Optimization. Unless otherwise specified, we optimize
the coarse model with batch size 32 using the Adam opti-
mizer [4] with a learning rate of 1× 10−2 without warmup
and decay. Note that the large global coordinate-based MLP
architecture in DreamFusion [7] limits its optimization to
only an effective batch size of 8. For the coarse model,
we add the opacity regularization as suggested by Poole et
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A corgi racing down the track*

A scooter*

Figure 1. Magic3D with image style transfer. The style of the reference image is transferred to the 3D model by providing it to the
diffusion model as conditional input. We apply different styles during 3D synthesis with two different text prompts. The first two columns
show the 3D model optimized given the text without reference image. Afterwards, we show the reference and the corresponding 3D shapes.
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A DSLR photo of a scooter

Figure 2. Magic3D with image style transfer with different guidance weights. Each column uses a different combination of guidance
weights ωtext, ωjoint. All results are optimized with noise level threshold t = 1.0. When ωtext = 0, ωjoint = 100, the setting is equivalent
to using a single guidance weight. The style image dominates the resulting scene if the ωjoint is too large. We generally find that using a
guidance weight combination around 50, 50 results in the best performance.

ref img 0.3 0.5 1.0

A DSLR photo of a scooter

Figure 3. Magic3D with image style transfer with different
noise level thresholds. Each column uses a different noise level
threshold t. All results are optimized with guidance weights ωtext,
ωjoint = 40, 60. When the noise level threshold t = 0, the setup is
equivalent to using no style image guidance. We generally find that
setting the threshold around 0.5 provides the best performance.

al. [7] to encourage sparsity in the volume density field, but
we do not add the orientation regularization as we empiri-
cally found it to hurt optimization.

Score Distillation Sampling. In the first stage, we sample
the timestep t ∼ U(0, 1) and set w(t) = 1. In the second
stage, we find the range of timestep t in SDS affects the
quality. We sample t ∼ U(0.02, 0.5) in our experiments. In
general, setting tmax in the range of [0.5, 0.7] works well. We
set w(t) = σ2

t in this stage.

C. Alternative High-Resolution Prior

In addition to LDM, we also consider using Super Reso-
lution (SR) diffusion prior [1,8] for increasing the resolution
of a coarse model. This diffusion model is trained to gener-
ate a high-resolution image conditioning on a low-resolution
input image. In SDS, this model predicts noises added in
high resolution, i.e., ϵϕ(xt; y, t, xlow), where xlow denotes a
64× 64 low-resolution image. We render xlow with a frozen
coarse model to optimize the second-stage fine model. Fig. 5
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Figure 4. Magic3D with image content transfer. Given the
reference images generated by the diffusion prior, we optimize 3D
models that look similar to the object in the images. We show the
generated 3D models given (i) text only, (ii) text and front view’s
reference image only and (iii) text and different view’s reference
images. (ii) and (iii) preserve the look of the dog in the image.
With multiple reference images, (iii) yields higher quality and more
3D-consistent outputs.

Coarse NeRF

tmax = 1.0 tmax = 0.7 tmax = 0.4

OursFine-tuned with SR Diffusion Prior 

Figure 5. Fine-tuning NeRF with SR prior fails to add high-
resolution details. tmax is the maximum timestep sampled in SDS.

shows this approach fails to add high-quality details to the
input coarse model.

D. Style-Guided Text-to-3D Synthesis

We also explore controlling the 3D generation with multi-
modal conditioning. The eDiff-I diffusion prior [1] is de-
signed such that it can condition on a reference image when
performing text-to-image generation. Such an image con-
ditioning design makes it easy to change the style of the
generated output. However, we find that naïvely feeding the
style image as input to the model when computing the SDS
gradient can result in a poor 3D model that is essentially
overfitting to the input image. We hypothesize that the con-
ditioning signal by the image is significantly stronger than
the text prompt during optimization. To better balance the
guidance strength between image and text conditioning, we
extend our model’s classifier-free guidance scheme [3] and

compute the final ϵ̃ϕ(xt; ytext, yimage, t):

ϵ̃ϕ(xt; ytext, yimage, t) = ϵϕ(xt; t)

+ ωtext[ϵϕ(xt; ytext, t)− ϵϕ(xt; t)]

+ ωjoint[ϵϕ(xt; ytext, yimage, t)− ϵϕ(xt; t)] , (2)

where ytext and yimage are text and image conditioning respec-
tively, and ωtext and ωjoint are the guidance weights for text
and joint text-and-image conditioning respectively. Note that
for ωjoint = 0, the scheme is equivalent to standard classifier-
free guidance with respect to text conditioning only.

Fig. 1 shows our style-guided text-to-3D generation re-
sults. When optimizing the 3D model, we feed the reference
image to the eDiff-I model. We set ωtext, ωjoint = 50, 50 or
40, 60 and apply the image guidance when t < 0.5 only. We
do not provide high-resolution results for this experiment be-
cause LDM does not support reference image conditioning.

Guidance weight and noise level threshold. We ablate dif-
ferent combinations of guidance weights and noise level
thresholds in Figs. 2 and 3, respectively. The guidance
weights ωtext and ωjoint balance the guidance strength during
optimization (see Eq. 2). A similar guidance formulation
has also been used by Liu et al. for compositional text-to-
image generation [5]. We also find that applying the image
conditioning only below a certain noise level threshold can
help control style transfer. The intuition is that image-based
style guidance is most relevant for optimizing the generated
3D object’s details, which are modeled at lower noise lev-
els. Notice that we do not provide high-resolution results
for this experiment because LDM does not support image
conditioning inputs.

Content image as reference. We also explore using multiple
images as inputs during 3D synthesis to transfer the content
in the images to the 3D model, as shown in Fig. 4: Given a
text prompt, we first ask the eDiff-I model to generate the
front view, side view and back view images. When optimiz-
ing the 3D model for the same text prompt from different
views, we then feed the corresponding generated view image
as input to guide the 3D synthesis. This approach requires
some degree of consistency with respect to subject identity
across the different view images, which can be achieved by
generating a set of different view images first and choosing
accordingly. Overall, the experiment shows that we can ap-
ply the text-to-image diffusion model to generate images
that can be used for guidance during 3D model optimization.
As we see, this does not only provide enhanced control by
preserving the identity of the subjects in the images, but
also improves output quality and 3D consistency. Generally,
depending on image type, image conditioning can be used
either for object-centric content transfer to 3D (Fig. 4) or for
abstract 3D stylization (Figs. 1, 2, and 3).
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Figure 6. Magic3D with prompt-based editing. Given a coarse model (first column) generated with a base prompt, we replace the
underscored text with new text and fine-tune the NeRF to get a high-resolution NeRF model with LDM. We further fine-tune the high-
resolution mesh on top of the NeRF model. Such a prompt-based editing technique gives artists better control over the 3D generation output.

E. Additional Results
We provide more qualitative comparisons with Dream-

fusion [7] in Figs. 7, 8, 9, 10, 11. Our Magic3D achieved
much higher quality in terms 3D geometry and texture.

We also show more results on prompt-based editing in
Fig. 6. Our Magic3D enable high-quality editing of the 3D
content through simple text prompt modification.
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Ours DreamFusion [7]

a ceramic lion

a rabbit cutting grass with a lawnmower†

a silver candelabra sitting on a red velvet tablecloth, only one candle is lit†

Sydney opera house, aerial view†

Figure 7. Qualitative comparison with DreamFusion [7]. We use the same text prompt as in DreamFusion. For each 3D model, we render
it from two views with a textureless rendering for each view and remove the background to focus on the 3D shape. For the DreamFusion
results, we take frames from the videos published on the official webpage. Magic3D generates much higher quality 3D shapes on both
geometry and texture compared with DreamFusion. ∗ a DSLR photo of... † a zoomed out DSLR photo of...
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Ours DreamFusion [7]

a humanoid robot using a laptop∗

a knight chopping wood∗

a mug of hot chocolate with whipped cream and marshmallows∗

an adorable piglet in a field∗

a peacock on a surfboard∗

Figure 8. Qualitative comparison with DreamFusion [7]. We use the same text prompt as in DreamFusion. For each 3D model, we render
it from two views with a textureless rendering for each view and remove the background to focus on the 3D shape. For the DreamFusion
results, we take frames from the videos published on the official webpage. Magic3D generates much higher quality 3D shapes on both
geometry and texture compared with DreamFusion. ∗ a DSLR photo of... † a zoomed out DSLR photo of...



Ours DreamFusion [7]

a plate piled high with chocolate chip cookies†

a squirrel-octopus hybrid∗

a stack of pancakes covered in maple syrup∗

a tarantula, highly detailed∗

a very beautiful small organic sculpture made of fine clockwork and gears with tiny ruby bearings, very intricate,
caved, curved. Studio lighting, High resolution, white background∗

Figure 9. Qualitative comparison with DreamFusion [7]. We use the same text prompt as in DreamFusion. For each 3D model, we render
it from two views with a textureless rendering for each view and remove the background to focus on the 3D shape. For the DreamFusion
results, we take frames from the videos published on the official webpage. Magic3D generates much higher quality 3D shapes on both
geometry and texture compared with DreamFusion. ∗ a DSLR photo of... † a zoomed out DSLR photo of...



Ours DreamFusion [7]

the leaning tower of Pisa, aerial view∗

a green tractor farming corn fields

a wide angle zoomed out DSLR photo of zoomed out view of Tower Bridge made out of gingerbread and candy†

a kangaroo sitting on a bench playing the accordion†

Figure 10. Qualitative comparison with DreamFusion [7]. We use the same text prompt as in DreamFusion. For each 3D model, we render
it from two views with a textureless rendering for each view and remove the background to focus on the 3D shape. For the DreamFusion
results, we take frames from the videos published on the official webpage. Magic3D generates much higher quality 3D shapes on both
geometry and texture compared with DreamFusion. ∗ a DSLR photo of... † a zoomed out DSLR photo of...



Ours DreamFusion [7]

an astronaut riding a kangaroo

a rabbit, animated movie character, high detail 3d model

a rabbit cutting grass with a lawnmower

a teddy bear pushing a shopping cart full of fruits and vegetables

Figure 11. Qualitative comparison with DreamFusion [7]. We use the same text prompt as in DreamFusion. For each 3D model, we render
it from two views with a textureless rendering for each view and remove the background to focus on the 3D shape. For the DreamFusion
results, we take frames from the videos published on the official webpage. Magic3D generates much higher quality 3D shapes on both
geometry and texture compared with DreamFusion. ∗ a DSLR photo of... † a zoomed out DSLR photo of...
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