
Supplementary Material

7. Limitation and Future Work

We further discuss the limitations of our work, which
will be the focus in future. Firstly, although we find that
explicit position embedding will promote performance sig-
nificantly compared with other manners of position embed-
ding, the rationale still remains unexplored. One possible
direction is to look for theoretical explanations from gradi-
ent flows. Secondly, for the neighbor aggregation functions,
we categorize them into learnable and non-learnable aggre-
gation and find that the max pooling is a strong parameter-
free method that is comparable to the learnable aggregation.
Therefore, the next step is to do a finer taxonomy and richer
ablation studies to find the applicable aggregation functions
in different scenarios.

8. More Instantiation Examples

DGCNN [29]. The neighbor update is described as:

f ′N (i) = Group(fi),

fj = MLP1(Concat(f ′j − fi, fi)).

Different from PointNet++ [16] that groups the neighbors
in coordinate space, the neighbors grouping in DGCNN is
conducted in the feature spaces. Similar to PointNet++,
DGCNN uses max pooling as the neighbor aggregation
function. The point update is absent in the DGCNN block.
Additionally, there exists no position embedding function
φe neither explicitly nor implicitly. In another word, there is
no relative position information encoded in the output fea-
tures.

PointCNN [10]. The neighbor update is described as:

f ′N (i),pN (i) = Group(fi, pi),

ej = MLP1(pj − pi),
fj = Concat(f ′j , ej).

The neighbor aggregation is defined as:

X = MLP2(pN (i) − pi),

f
(1)
i = Conv(K,X × fN (i)),

where × denotes matrix multiplication and K denotes the
trainable convolution kernels of the convolution layer Conv.
Two position embedding functions exist in this block. The
first one φe1 is MLP1 used in the neighbor update, while
the second one φe2 is implicitly implemented by Conv(K, ·)
used in the neighbor aggregation function. Implementing
position embedding by convolution layers is a common
practice in the ViT family [3, 32].

RandLA-Net [7]. The neighbor update is described as
follows:

f ′N (i),pN (i) = Group(fi, pi),

fj = MLP1(Concat(f ′j , pj)).

The position embedding is described as:

ej = MLP2(Concat(pj − pi, |pj − pi|, pj , pi)).

The neighbor aggregation is implemented using attentive
pooling that is similar to Point Transformer [35]. The neigh-
bor aggregation is as follows:

Mj = Softmax(MLP3(Concat(fj , ej))),

f
(1)
i =

∑
j∈N (i)

(Mj � Concat(fj , ej)),

where Mj ∈ R2d denotes the attention weights for the
neighbor j, � denotes the Hadamard product. Finally, the
point feature is updated with an MLP layer and a shortcut,
then we have

f
(2)
i = MLP4(f

(1)
i) + fi.

PointConv [31]. The neighbor update and point update
of PointConv is same with PointNet++ [16]. The original
neighbor aggregation function of PointConv is defined as
follow:

gj = MLP1(pj − pi),

fi =
∑

j∈N (i)

gj × fj ,

where gj ∈ Rdout×din is the weight matrices that map
features from dimension din to dout, × denotes matrix
multiplication, L denotes the number of the kernel points,
{pl|l < L} denotes the coordinates of the kernel points,
and {Wl|l < L} denotes the associated weights matrices.
However, different with the convolution for 2D images,
the weight matrices in each local neighborhood for 3D is
unique, which results in a huge memory cost. To address
this challenge, the authors propose an efficient version,
which decouples the weight matrix for each local neighbor-
hood into two parts: a dynamic weight matrix Mj ∈ Rdmid

and a static weight matrix H ∈ Rdout×(din×dmid). In this
way, the memory consumption of the generated weights re-
duces to dmid

Ndout
of the original version. The efficient version

of neighbor aggregation is described as follows:

Mj = MLP1(pj − pi),

f ′i =
∑

j∈N (i)

Mj × f>j , (5)

11

M
LP

PointM
etaSA

Feat. Propagation

PointM
etaB

ase

PointM
etaSA

PointM
etaB

ase

PointM
etaSA

PointM
etaB

ase

PointM
etaSA

PointM
etaB

ase

Feat. Propagation

Feat. Propagation

Feat. Propagation

[N, 32] [N/4, 64] [N/16, 128] [N/64, 256] [N/256, 512] [N/64, 256] [N/16, 128] [N/4, 64] [N, 32]

2×

4×
2×

2×

Figure 3. Macro-architecture of PointMetaBase-L. Applying explicit position embedding and the MLP-before-Group order, we tweak
the set abstraction module [16, 18] as the reduction block, termed PointMetaSA. We adopt the same scaling strategies and decoder with
PointNeXt [18] to construct our PointMetaBase family.

fi = H × Vec(f ′i). (6)

In Eq. 5, the neighbor features {fj |j ∈ N (i)} is transfomed
into f ′i ∈ Rdmid×din . Then, in Eq. 6, f ′i is turned into a
vector by Vec(·) and then multiply with matrix H .

KPConv [24]. The neighbor update is described as fol-
lows:

fj , pj = Group(fi, pi).

The neighbor aggregation is as follows:

gj =

L∑
l=1

max(0, 1− ||pj − pl||
σ

)Wl, fi =
∑

j∈N (i)

gj × fj ,

where × denotes matrix multiplication, L denotes the
number of the kernel points, {pl|l < L} denotes the co-
ordinates of the kernel points, and {Wl|l < L} denotes
the associated weights matrices. Similar with the original
version of PointConv [31], the dynamic weights matrices
{gj |j ∈ N (i)} across all local neighborhoods will incur
huge memory comsumption. Thus in the code implemen-
tation KPConv adopt similar strategy that first transforms
the neighbor features with dynamic weights and then up-
date point feature with static weights.

PointNeXt [18]. PointNeXt conducts almost the same
neighbor update with PointNet++ [16] except for the con-
figuration of the MLP. PointNet++ applies a 3-layer MLP
while PointNeXt only applies 1 layer on the neighbor fea-
ture f ′j to reduce computation. Besides, PointNeXt also
adopts a simple max pooling operation. As for the point
update, PointNeXt uses a 2-layer MLP with an inverted bot-
tleneck together with a shortcut layer from the input point
feature fi, then we have:

f
(2)
i = MLPinv(f

(1)
i) + fi.

9. Macro-Architecture
Applying explicit position embedding and the MLP-

before-Group order, we tweak the set abstraction mod-
ule [16, 18] as the reduction block, termed PointMetaSA.
The decoder is composed of a series of feature propagation
blocks [16, 18]. As shown in Fig. 3, a 1-layer MLP is used
as stem in the first stage. In the later stages, PointMetaSA
is placed first and the following are several PointMetaBase
blocks. We adopt the same scaling strategies with Point-
NeXt [18] to construct our PointMetaBase family. The con-
figuration of our PointMetaBase family is summarized as
follows:

• PointMetaBase-S : C = 32, B = 0

• PointMetaBase-L : C = 32, B = (2, 4, 2, 2)

• PointMetaBase-XL : C = 32, B = (3, 6, 3, 3)

• PointMetaBase-XXL : C = 32, B = (4, 8, 4, 4)

C denotes the channel size of the stem MLP and B de-
notes the number of the PointMetaBase block in each stage.
Note that when B = 0, only one PointMetaSA block but
no PointMetaBase blocks are used at each stage. Due to
the excellent efficiency of PointMetaBase, we do not need
to construct the network at the level ”B” as done in Point-
NeXt [18]. In contrast, we choose to scale the model to a
larger level ”XXL”.

12

G
T

Po
in
tM

et
aB
as
e

Figure 4. Semantic segmentation results on S3DIS [1]. The fist row is groundtruth, and the second one is predicted by PointMetaBase-XL.
Best viewed in color.

13

	1 . Introduction
	2 . Related Work
	3 . PointMeta
	3.1 . Meta Architecture
	3.2 . Instantiation Examples

	4 . Explore Best Practices
	4.1 . Neighbor Update
	4.2 . Position Embedding
	4.3 . Neighbor Aggregation
	4.4 . Point Update
	4.5 . Best Practices
	4.6 . PointMetaBase

	5 . Experiments
	5.1 . 3D Scene Segmentation
	5.2 . 3D Object Classification
	5.3 . 3D Part Segmentation

	6 . Conclusion
	7 . Limitation and Future Work
	8 . More Instantiation Examples
	9 . Macro-Architecture

