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8. Experimental Details
In this section, we go through the hyperparameter details

for all the experiments for reproducibility.
Basic settings: We follow the original CLIP [81] to

L2-normalize the features after the encoder before sending
them into the linear layer. We also use the L2-normalized
text features to initialize the final linear layer weight follow-
ing WiSE-FT [100]. For all cross-modal adaptation experi-
ments, half of the batch is image samples and the other half
is text samples. For all experiments, we use AdamW opti-
mizer following WiSE-FT [100] and tune the hyperparame-
ters including initial learning rate, weight decay, and batch
size on the few-shot validation set. We perform a learn-
ing rate warmup with 50 iterations, during which the learn-
ing rate goes up linearly from 0.00001 to the initial value.
We then perform a cosine annealing learning rate schedul-
ing over the course of 12800 iterations. We do early stop-
ping based on the few-shot validation set performance eval-
uated every 100 iterations. Furthermore, because the logit
scale (inverse of softmax temperature) is a learnable weight
clipped at 100 during CLIP-pretraining [81], we reuse the
given logit scale of 100 for all experiments except for par-
tial finetuning, where we find lowering it to 50 can improve
validation performance. Future work may choose to set the
logit scale as a learnable parameter instead.

We now report the range of hyperparameter search for
each method. Note that the search range is kept the same
for all 11 target datasets.

Linear Probing: For all linear probing experiments, we
perform a grid search of learning rate in [0.001, 0.0001],
weight decay in [0.0, 0.01, 0.0001], and batch size in [8, 32].

WiSE-FT: To compare with linear probing, we adopt the
same procedure above to train the linear classifier and then
perform post-hoc ensembling with the text-based classifier
with a fixed ratio of 0.5.

Partial Finetuning: For all partial finetuning ex-
periments, we perform a grid search of learning
rate in [0.00001, 0.000001, 0.0000001], weight decay in
[0.0, 0.001, 0.00001], and batch size is set to 8. CLIP [81]
adopts a modified version of ResNet-50 image encoder, in
which the final average pooling layer is replaced by an at-
tentional pooling layer. We thus choose this layer as the
finetuning target for all ResNet-50 experiments. For ViT-
B/16 encoder, we simply finetune the last transformer layer.
In the next section, we also show that finetuning the text
encoder is not as effective.

Cross-modal Prompting: We follow the same setup and
hyperparameters used in CoOp [113]. We use the ResNet-
50 backbone with 16 learnable tokens, and append the class

Included Dataset ESC-50 [77] Class ImageNet [15] Class

ImageNet-ESC-19

rooster rooster
hen hen

chirping-birds chickadee
frog tree frog
dog otterhound
cat egyptian cat

insects fly
crickets cricket

pig pig
sheep big-horn sheep

airplane airliner
train high-speed train

chainsaw chainsaw
keyboard-typing computer keyboard

clock-alarm digital clock
mouse-click computer mouse

vacuum-cleaner vacuum cleaner
clock-tick wall clock

washing-machine washing machine

ImageNet-ESC-27

can-opening can opener
church-bells church bells

crackling-fire fire screen
toilet-flush toilet seat
water-drops sink

drinking-sipping water bottle
pouring-water water jug

sea-waves sandbar

Table 9. ImageNet-ESC dataset class matchings.

name to the end of the tokens. Following CoOp, we use
SGD with a learning rate of 0.002, decayed using the co-
sine annealing rule. We train for 200 epochs for 8 and 16
shots, 100 epochs for 2 and 4 shots, and 50 epochs for 1
shot (except ImageNet which is fixed at 50 epochs). The
learning rate for the first epoch is fixed at 0.00001. We also
use the same random resized crop transformations as CoOp.

Cross-modal Adapter: We follow the same 2-layer
MLPs architecture in CLIP-Adapter [21] with a residual ra-
tio of 0.2. Specifically, the first linear layer downsizes the
input feature to 1

4 of the original dimension and the second
linear layer transforms it back to the original dimension.
Each linear layer is followed by a ReLU function. Finally,
the transformed features are multiplied by 0.2 and added
with 0.8 * the original feature. We use a single adapter
for both image and text features. We perform a grid search
of learning rate in [0.0001, 0.00001, 0.000001, 0.0000001],
weight decay in [0.0, 0.001, 0.00001], and batch size is set
to 8. We do not adopt the cache-modal and training-free
initialization proposed in the follow-up Tip-Adapter [111]
method. Also, we notice that Tip-Adapter uses test set
to perform early stopping; we however strictly follow the
CoOp protocol to use the few-shot validation set for all hy-
perparameter searching.

ImageNet-ESC Experiments: For all linear probing ex-
periments on ImageNet-ESC, we perform a grid search of
learning rate in [0.1, 0.01, 0.001, 0.0001], weight decay in
[0.0, 0.01, 0.0001], and batch size is 8.



9. Additional Results
In this section, we present all the results with standard

deviation over multiple runs. Here is an overview (please
refer to table captions for more discussion):

1. Per-dataset results for all methods: We show Fig-
ure 6 and Table 10. In particular, we note that
cross-modal adaptation consistently outperforms prior
methods across a wide variety of visual recognition
datasets, further strengthening our claim that our ap-
proach should be the de-facto adaptation method for
finetuning multimodal models.

2. Ablation for augmentation techniques: In Table 11,
we show the performance of all combinations of image
and text augmentation techniques. Importantly, simple
text augmentation strategies work very well for visual

recognition.

3. Ablation for classifier initialization: In Table 12, our
experiments suggest that (a) text-based initialization is
beneficial for both linear and partial finetuning, and (b)
cross-modal adaptation can improve the performance
regardless of the initialization.

4. Ablation for partial finetuning: In Table 13, we con-
firm that partial finetuning of the image encoder is
more effective than finetuning the text encoder.

5. Complete results for all reported methods: In Ta-
ble 14, we show the standard deviation for all meth-
ods reported in the main paper and appendix, including
ViT-based encoder results.

6. Complete results on ImageNet-ESC benchmark:
We show the complete results on ImageNet-ESC-19
and ImageNet-ESC-27 for both image-classification in
Table 15 and audio-classification in Table 16. We addi-
tionally include the results of the text-based classifier
and cross-modal linear probing with all three modal-
ities (including text) for reference. Including the text
modality seems to be the most performant, which is
expected since the benchmark is curated based on tex-
tual information, i.e. matching label names. We also
note that just adding text modality is better than in-
cluding all three modalities; we believe this issue can
be alleviated with better alignment between the image
and audio representations, e.g. scaling the pre-training
data for AudioCLIP. Furthermore, the standard devia-
tions of the experiments are higher than those of the
vision-language adaptation experiments because the
randomly sampled one-shot sample can make a huge
difference in the performance. However, cross-modal
adaptation is more performant not by chance – in more

than 75% of the experiments, adding the one-shot-
audio or one-shot-image to the same set of samples can
outperform uni-modal linear probing.

7. Comparison to ProDA [63]: In Table 17, we com-
pare to ProDA, another promising SOTA method that
does automatic prompt ensembling with 36 learned
templates. We are told by the authors that they do not
follow the dataset split given by CoOp [113], and use
the official test split of each dataset whenever possi-
ble or sample their own test split from the train set.
Therefore, we cannot directly compare to their perfor-
mance since CoOp [113] use their own test split for
most datasets and ProDA does not release the code yet.
In particular, official test sets exist for two of the target
datasets (Food101 [6] and DTD [14]). We therefore
switch to the official test split for these two datasets
and use the CoOp’s split for the rest of the 9 datasets in
Table 17 as our best attempt to compare to ProDA [63].
Note that ProDa also does not report the use of a few-
shot validation set. In conclusion, our approach is still
more performant than theirs under most scenarios with
significantly fewer training resources.

8. 180 templates used for mining: In Table 18, we show
the pool of templates we use when mining based on
few-shot validation set performance.



Figure 6. Comparison of few-shot learning results across 11 datasets. We show our main methods (cross-modal linear probing and
partial finetuning) and compare them with prior works. We note that the Tip-Adapter [111] numbers shown are our own re-run of the
method, where we replace their early-stopping on the test set with early stopping on the few-shot validation set for a fair comparison. As
seen in the plots, cross-modal partial finetuning consistently outperforms prior works across the datasets, and cross-modal linear probing
is also generally more performant.



Method Shots Dataset

Caltech [55] ImageNet [15] DTD [13] EuroSAT [34] Aircraft [65] Food [7] Flowers [72] Pets [76] Cars [51] SUN397 [103] UCF101 [93] Average

Zero-Shot CLIP 0 86.29 58.18 42.32 37.56 17.28 77.31 66.14 85.77 55.61 58.52 61.46 58.77

CoOp

1 87.53 57.15 44.39 50.63 9.64 74.32 68.12 85.89 55.59 60.29 61.92 59.77

2 87.93 57.81 45.15 61.50 18.68 72.49 77.51 82.64 58.28 59.48 64.09 62.32

4 89.55 59.99 53.49 70.18 21.87 73.33 86.20 86.70 62.62 63.47 67.03 66.77

8 90.21 61.56 59.97 76.73 26.13 71.82 91.18 85.32 68.43 65.52 71.94 69.89

16 91.83 62.95 63.58 83.53 31.26 74.67 94.51 87.01 73.36 69.26 75.71 73.42

Tip-Adapter

1 87.90± 0.75 60.87± 0.04 48.58± 0.63 51.81± 2.45 20.06± 0.39 77.27± 0.39 76.70± 0.28 86.44± 1.35 58.42± 0.47 62.40± 0.27 65.38± 0.29 63.26± 0.68

2 89.40± 0.22 61.54± 0.01 51.64± 0.58 66.32± 2.06 21.17± 0.62 77.44± 0.07 79.50± 1.07 86.44± 0.44 61.06± 0.41 63.22± 0.62 67.45± 1.77 65.93± 0.72

4 90.78± 0.16 62.48± 0.01 57.21± 0.33 69.23± 2.85 24.97± 0.84 77.20± 0.43 89.00± 0.44 86.45± 0.71 64.54± 0.38 65.75± 0.15 71.17± 0.36 68.98± 0.61

8 91.10± 0.18 63.94± 0.16 61.92± 0.83 77.69± 2.45 28.13± 1.06 78.36± 0.12 92.40± 0.24 88.11± 0.42 69.32± 0.08 68.28± 0.34 74.42± 0.72 72.15± 0.60

16 92.28± 0.66 65.18± 0.15 66.23± 0.79 81.96± 2.26 34.83± 0.92 79.05± 0.26 93.90± 0.68 89.13± 0.28 75.08± 0.23 71.27± 0.13 77.24± 0.3 75.10± 0.61

ProGrad

1 88.68± 0.34 57.75± 0.24 46.14± 1.74 56.32± 3.04 18.81± 0.50 76.04± 0.54 73.18± 0.73 88.36± 0.73 58.38± 0.23 60.54± 0.24 64.55± 0.50 62.61± 0.80

2 87.98± 0.69 59.75± 0.33 49.78± 1.37 63.10± 3.77 20.47± 0.90 74.95± 0.57 79.77± 0.65 86.89± 0.42 61.81± 0.45 63.06± 0.11 66.35± 0.18 64.90± 0.86

4 89.99± 0.26 61.46± 0.07 54.43± 0.86 72.53± 1.29 23.32± 0.36 75.95± 0.27 85.37± 0.96 88.04± 0.50 65.62± 0.43 66.39± 0.43 69.86± 0.30 68.45± 0.52

8 90.83± 0.07 62.54± 0.03 60.69± 0.10 78.04± 2.45 27.02± 0.67 76.65± 0.23 91.64± 0.24 87.91± 0.54 69.29± 0.11 67.62± 0.28 73.33± 0.65 71.41± 0.49

16 92.10± 0.39 63.54± 0.08 63.87± 0.99 83.29± 0.85 30.25± 1.09 78.41± 0.08 94.37± 0.24 89.00± 0.32 73.46± 0.29 69.84± 0.18 75.38± 0.10 73.96± 0.42

Wise-FT

1 85.49± 0.81 58.30± 0.24 44.17± 0.72 52.30± 2.00 18.61± 0.54 71.88± 0.02 65.83± 0.54 81.73± 1.15 55.66± 0.15 56.59± 0.10 59.39± 1.33 59.09± 0.69

2 87.00± 0.68 59.08± 0.34 46.95± 0.27 57.07± 4.26 20.88± 0.36 73.54± 0.11 71.02± 0.94 82.75± 0.62 58.67± 0.15 60.15± 0.10 62.74± 0.67 61.80± 0.77

4 89.03± 0.17 60.48± 0.11 52.23± 0.70 62.45± 4.09 23.33± 0.38 76.17± 0.33 77.10± 0.50 85.95± 0.52 62.09± 0.35 63.18± 0.22 66.14± 0.46 65.29± 0.71

8 90.07± 0.34 61.85± 0.22 55.56± 0.50 71.40± 2.80 26.97± 0.28 76.72± 0.31 82.54± 0.34 86.52± 0.45 66.00± 0.47 65.25± 0.48 69.84± 0.33 68.43± 0.59

16 90.79± 0.15 62.84± 0.11 61.74± 0.61 77.79± 0.52 31.75± 0.46 77.80± 0.04 86.91± 0.71 87.50± 0.30 71.28± 0.20 67.46± 0.17 72.20± 0.03 71.64± 0.30

Cross-Modal Linear Probe

1 88.68± 0.17 60.19± 0.14 49.74± 0.24 59.54± 5.28 21.21± 1.37 75.10± 1.81 80.35± 0.22 84.54± 1.92 58.68± 0.17 62.13± 0.30 65.24± 0.36 64.13± 1.09

2 88.68± 2.04 60.56± 0.10 53.61± 2.36 65.23± 2.42 23.48± 0.56 77.27± 0.07 86.30± 0.94 85.25± 2.46 61.75± 0.29 64.79± 0.13 69.53± 0.74 66.95± 1.10

4 91.29± 0.51 61.48± 0.15 60.36± 0.46 72.72± 2.00 26.70± 0.48 77.27± 0.66 90.86± 0.15 87.60± 0.22 65.88± 0.06 67.03± 0.43 72.24± 0.35 70.31± 0.50

8 92.05± 0.09 62.44± 0.08 62.96± 0.12 79.21± 2.13 31.19± 1.45 78.38± 0.19 93.88± 0.50 87.84± 0.65 69.76± 0.63 69.03± 0.16 75.86± 0.37 72.96± 0.58

16 92.86± 0.20 64.51± 0.05 67.43± 1.51 84.91± 0.27 37.58± 0.82 78.57± 0.54 96.16± 0.19 88.76± 0.32 75.49± 0.36 70.92± 0.03 78.47± 0.12 75.97± 0.40

Cross-Modal Wise-FT

1 88.61± 0.15 60.90± 0.22 48.17± 0.17 55.09± 7.22 20.62± 0.44 77.05± 0.19 77.18± 1.70 86.54± 0.56 59.10± 0.40 62.47± 0.32 65.65± 0.55 63.76± 1.08

2 88.56± 1.95 61.77± 0.16 51.83± 0.66 64.33± 3.76 21.88± 0.30 77.62± 0.21 81.84± 0.19 87.01± 0.12 62.24± 0.33 64.19± 0.63 69.11± 0.92 66.40± 0.84

4 89.94± 0.23 62.45± 0.13 56.23± 0.98 72.22± 2.18 24.11± 0.14 78.25± 0.09 85.46± 0.99 87.99± 0.22 65.31± 0.87 65.61± 0.57 70.88± 0.20 68.95± 0.60

8 91.36± 0.27 63.44± 0.14 60.15± 2.36 76.92± 3.75 28.59± 2.21 78.60± 0.17 90.72± 0.97 88.53± 0.22 68.57± 1.41 67.42± 0.61 74.83± 1.18 71.74± 1.21

16 92.48± 0.32 65.15± 0.05 63.87± 2.27 79.96± 1.76 33.86± 2.14 78.94± 0.38 91.65± 0.26 89.38± 0.21 73.64± 0.66 68.92± 0.57 77.12± 0.56 74.09± 0.83

Cross-Modal Adapter

1 89.03± 0.36 61.23± 0.12 47.24± 0.91 60.50± 4.04 21.04± 1.30 75.90± 1.66 80.63± 0.28 85.62± 0.71 59.00± 0.20 62.86± 0.24 65.30± 0.38 64.40± 0.93

2 89.36± 1.20 61.85± 0.01 54.51± 1.55 66.08± 1.67 23.58± 0.62 77.53± 0.20 85.69± 0.22 86.89± 0.23 62.22± 0.53 65.46± 0.26 70.12± 0.68 67.57± 0.65

4 91.33± 0.23 62.98± 0.10 60.03± 0.53 73.46± 2.67 27.55± 0.47 77.92± 0.63 90.81± 0.28 87.76± 0.12 66.40± 0.87 67.63± 0.37 72.67± 0.04 70.78± 0.57

8 92.08± 0.02 63.71± 0.06 64.11± 0.91 78.83± 2.66 32.75± 0.14 78.83± 0.14 93.57± 0.19 87.79± 0.11 70.29± 0.45 68.61± 0.52 76.34± 0.49 73.35± 0.52

16 92.98± 0.14 64.72± 0.19 67.51± 1.32 82.15± 1.92 38.80± 1.06 79.14± 0.44 95.57± 0.11 88.64± 0.16 75.96± 0.62 70.91± 0.33 78.91± 0.14 75.94± 0.58

Cross-Modal Partial Finetuning

1 89.10± 0.36 61.55± 0.45 49.92± 0.76 61.84± 5.16 20.56± 0.21 77.14± 0.70 76.25± 0.42 85.72± 0.72 58.96± 0.15 63.38± 0.27 66.80± 0.18 64.66± 0.85

2 89.97± 0.28 62.64± 0.12 55.18± 1.77 68.48± 1.75 22.65± 0.72 78.19± 0.18 82.80± 0.34 87.24± 0.99 61.19± 0.36 65.81± 0.34 70.34± 0.06 67.68± 0.63

4 91.30± 0.75 62.77± 0.47 60.68± 0.36 75.21± 2.10 25.58± 0.61 78.57± 0.15 88.66± 0.28 87.86± 0.73 64.49± 0.08 67.76± 0.51 73.61± 0.09 70.59± 0.56

8 92.20± 0.19 64.23± 0.11 64.72± 0.54 81.33± 1.61 33.87± 0.70 78.92± 0.21 93.50± 0.24 88.71± 0.34 69.06± 0.40 69.64± 0.08 77.50± 1.04 73.97± 0.50

16 93.52± 0.20 65.95± 0.04 68.91± 0.49 86.67± 0.72 43.60± 0.31 78.66± 0.85 95.72± 0.22 89.12± 0.32 75.45± 0.49 71.91± 0.05 79.95± 0.46 77.22± 0.38

Table 10. Per-dataset results on the ResNet-50 backbone. We also include results from prior works for easier comparison. The zero-
shot CLIP numbers differ from those reported in the original CLIP paper because we use one single prompt per dataset. We bold the
best result for each shot and each dataset, and underline the second best result. We see that cross-modal adaptation methods consistently
produce the best performance across almost all dataset. The Tip-Adapter results are reproduced using only the few-shot validation set for
hyperparameter searching and early stopping.



Finetuning ImageAug TextAug Number of shots

1 2 4 8 16

Linear

CenterCrop (1 view)

N/A (Uni-Modal Adaptation)

36.58(1.47) 48.85(1.43) 58.87(0.82) 66.46(0.74) 71.63(0.50)
+Flip (2 views) 37.51(1.46) 49.43(1.59) 59.37(0.74) 66.65(0.64) 71.83(0.54)

+RandomCrop (2 views) 37.74(1.47) 49.21(1.46) 59.23(0.82) 66.70(0.60) 71.94(0.54)

+RandomCrop (10 views) 37.76(1.20) 49.25(1.14) 59.13(0.92) 66.52(0.59) 71.89(0.49)

CenterCrop (1 view)

Class name 61.78(1.17) 65.34(0.79) 68.98(0.67) 72.01(0.57) 74.91(0.59)
a photo of a {cls}. 63.22(1.37) 66.18(0.74) 69.73(0.53) 72.51(0.71) 75.29(0.62)

Hand Engineered 63.66(1.25) 66.67(0.91) 70.33(0.53) 72.92(0.61) 75.54(0.53)
Template Mining (21 views) 63.50(1.33) 67.21(0.80) 70.26(0.65) 73.07(0.63) 75.73(0.54)

+Flip (2 views)

Class name 61.84(0.79) 65.32(1.15) 69.25(0.52) 72.32(0.56) 75.27(0.49)
a photo of a {cls}. 63.36(0.84) 66.42(1.20) 69.88(0.62) 72.73(0.71) 75.53(0.49)

Hand Engineered 64.13(1.09) 66.95(1.10) 70.31(0.50) 72.96(0.58) 75.97(0.40)

Template Mining (21 views) 63.88(1.21) 67.19(0.97) 70.32(0.70) 73.10(0.57) 75.70(0.59)

+RandomCrop (2 views)

Class name 61.47(1.27) 65.09(1.20) 68.94(0.64) 72.06(0.76) 75.12(0.59)
a photo of a {cls}. 63.32(1.14) 66.05(0.92) 69.93(0.63) 72.91(0.53) 75.67(0.50)

Hand Engineered 63.71(1.50) 66.75(0.83) 70.19(0.51) 72.84(0.60) 75.83(0.59)
Template Mining (21 views) 63.68(1.75) 67.14(0.80) 70.53(0.53) 72.98(0.67) 75.75(0.49)

+RandomCrop (10 views)

Class name 61.52(1.18) 65.37(0.82) 68.85(0.77) 72.12(0.72) 75.02(0.63)
a photo of a {cls}. 63.35(1.04) 66.45(0.73) 69.52(0.78) 72.69(0.55) 75.44(0.72)

Hand Engineered 63.85(1.35) 66.87(0.82) 70.19(0.50) 72.98(0.59) 75.62(0.51)
Template Mining (21 views) 63.90(1.35) 67.00(0.86) 69.94(1.02) 73.04(0.69) 75.75(0.54)

Partial

CenterCrop (1 view)

N/A (Uni-Modal Adaptation)

29.93(2.37) 42.63(0.83) 54.27(1.06) 64.16(0.81) 71.62(0.56)
+Flip (2 views) 31.68(1.19) 43.61(1.08) 55.15(0.77) 64.90(0.87) 72.19(0.44)

+RandomCrop (2 views) 31.01(1.39) 43.78(1.09) 55.16(0.79) 64.91(0.93) 72.03(0.44)
+RandomCrop (10 views) 31.46(1.41) 43.76(1.07) 55.23(0.79) 64.74(0.78) 72.15(0.41)

CenterCrop (1 view)

Class name 62.50(1.34) 65.66(0.84) 69.33(0.86) 72.93(0.47) 76.21(0.41)
a photo of a {cls}. 63.78(1.07) 66.79(0.68) 69.80(0.75) 73.40(0.43) 76.67(0.35)

Hand Engineered 64.27(0.96) 67.14(0.58) 70.26(0.55) 73.53(0.51) 76.53(0.48)
Template Mining (21 views) 64.57(0.81) 67.21(0.67) 70.24(0.89) 73.71(0.58) 76.86(0.32)

+Flip (2 views)

Class name 62.52(1.27) 66.02(0.86) 69.64(0.65) 73.30(0.59) 76.44(0.45)
a photo of a {cls}. 64.13(0.97) 67.16(0.64) 69.97(1.22) 73.83(0.44) 77.03(0.39)

Hand Engineered 64.66(0.85) 67.68(0.63) 70.59(0.56) 73.79(0.50) 77.22(0.38)

Template Mining (21 views) 64.59(1.02) 67.58(0.74) 70.58(0.82) 74.00(0.49) 77.16(0.33)

+RandomCrop (2 views)

Class name 62.31(1.78) 65.77(0.77) 69.52(0.70) 73.21(0.49) 76.52(0.39)
a photo of a {cls}. 63.72(1.09) 66.99(0.52) 69.89(1.14) 73.63(0.55) 76.94(0.37)

Hand Engineered 63.64(1.54) 67.35(0.69) 70.50(0.69) 73.96(0.48) 77.05(0.47)
Template Mining (21 views) 64.41(1.18) 67.36(0.75) 70.77(0.61) 73.94(0.53) 77.19(0.35)

+RandomCrop (10 views)

Class name 62.18(1.47) 66.01(0.64) 69.47(0.78) 73.27(0.46) 76.60(0.45)
a photo of a {cls}. 64.00(1.12) 67.08(0.64) 70.22(0.64) 73.70(0.51) 76.96(0.41)

Hand Engineered 64.12(1.38) 67.63(0.64) 70.58(0.59) 73.93(0.39) 77.13(0.38)
Template Mining (21 views) 64.57(1.00) 67.37(0.62) 70.86(0.54) 74.02(0.41) 77.27(0.38)

Table 11. Ablation for augmentation under vision-language adaptation. Salient conclusions: (1) Uni-modal adaptation is much worse
than cross-modal adaptation even when doing aggressive image augmentation to increase the number of views, e.g. 10 random crops. (2)
Doing both image augmentation and text augmentation can improve the results, but text augmentation has a more profound impact whereas
image augmentation saturates with a few views. (3) Simple template mining can be as competitive as manually selected templates (cf.
Table 18). Overall, we hope this preliminary investigation can encourage future work to explore more text augmentation strategies.



Method Initialization Number of shots

1 2 4 8 16

Linear Probing Random 36.58(1.47) 48.85(1.43) 58.87(0.82) 66.46(0.74) 71.63(0.50)
Text 58.32(0.71) 61.39(0.74) 65.25(0.61) 68.54(0.58) 71.90(0.33)

Cross-Modal Linear Probing Random 48.37(1.58) 54.87(1.33) 61.98(0.84) 67.96(0.58) 72.32(0.50)
Text 63.66(1.25) 66.67(0.91) 70.33(0.53) 72.92(0.61) 75.54(0.53)

Partial Finetuning Random 29.93(2.37) 42.63(0.83) 54.27(1.06) 64.16(0.81) 71.62(0.56)
Text 60.79(1.53) 63.44(0.64) 66.51(0.60) 69.46(0.68) 72.67(0.54)

Cross-Modal Partial Finetuning Random 42.03(1.91) 50.85(1.20) 59.74(0.89) 66.98(0.90) 72.92(0.42)
Text 64.27(0.96) 67.14(0.58) 70.26(0.55) 73.53(0.51) 76.53(0.48)

Table 12. Ablation results for text-based vs random initialization for linear classifier weight. We perform diligent analysis to confirm
that initializing the linear classifier weights with text features is beneficial for the final performance. Still, cross-modal adaptation uniformly
boosts the performance no matter the method or initialization. The text-based initialization is also more important for partial-finetuning
than for linear probing, confirming the hypothesis [53] that a randomly initialized classifier will distort pre-trained features. Experiments
in this table use center crop as image augmentation and Tip-Adapter’s template as text augmentation for simplicity.

Image Encoder Text Encoder Number of shots

1 2 4 8 16

Frozen Frozen 63.66(1.25) 66.67(0.91) 70.33(0.53) 72.92(0.61) 75.54(0.53)
Finetune Attention Pooling Layer Frozen 64.13(1.29) 67.23(0.51) 70.44(0.55) 73.64(0.47) 76.65(0.44)

Frozen Finetune Last Transformer Layer 64.12(1.10) 67.41(0.79) 70.31(0.52) 72.12(0.38) 73.34(0.32)
Finetune Attention Pooling Layer Finetune Last Transformer Layer 64.09(1.28) 67.06(0.76) 70.38(0.57) 73.64(0.48) 76.68(0.39)

Table 13. Ablation results for partial-finetuning. Partial finetuning of the last layer of image encoder is much more effective than
finetuning the last layer of text encoder, suggesting that one may simply freeze the text encoder for few-shot vision-language adaptation.
Experiments in this table use center crop as image augmentation and Tip-Adapter’s template as text augmentation for simplicity.

Backbone Method Number of shots

1 2 4 8 16

ResNet50

WiSE-FT 59.09(0.69) 61.80(0.77) 65.29(0.71) 68.43(0.59) 71.64(0.30)
Cross-Modal WiSE-FT 63.76(1.08) 66.40(0.84) 68.95(0.60) 71.74(1.21) 74.09(0.83)
Cross-Modal Prompting 61.97(0.46) 64.91(0.48) 68.43(0.50) 71.39(0.59) 73.990.54)

Cross-Modal Adapter 63.84(1.28) 67.11(0.96) 70.71(0.49) 73.32(0.67) 75.89(0.54)
Linear Probing 36.58(1.47) 48.85(1.43) 58.87(0.82) 66.46(0.74) 71.63(0.50)

Cross-Modal Linear Probing 63.66(1.25) 66.67(0.91) 70.33(0.53) 72.92(0.61) 75.54(0.53)
Partial Finetuning 29.93(2.37) 42.63(0.83) 54.27(1.06) 64.16(0.81) 71.62(0.56)

Cross-Modal Partial Finetuning 64.27(0.96) 67.14(0.58) 70.26(0.55) 73.53(0.51) 76.53(0.48)

ViT-B/16

WiSE-FT 60.31(0.68) 62.27(0.72) 64.97(0.39) 67.03(0.44) 68.93(0.72)
Cross-Modal WiSE-FT 71.19(1.27) 73.45(0.79) 75.33(0.98) 77.91(0.85) 79.51(0.82)

Linear Probing 43.87(2.55) 56.84(1.45) 67.12(0.94) 73.77(0.69) 78.16(0.52)
Cross-Modal Linear Probing 71.21(1.13) 73.70(1.03) 76.78(0.48) 78.89(0.37) 81.07(0.30)

Partial Finetuning 35.44(3.49) 52.04(1.52) 65.50(0.99) 74.05(0.94) 79.58(0.53)
Cross-Modal Partial Finetuning 70.70(1.21) 74.70(0.84) 77.76(0.50) 80.19(0.34) 82.52(0.41)

Table 14. Complete results for all methods reported. Experiments in this table use center crop as image augmentation and Tip-Adapter’s
template as text augmentation. Furthermore, we include ViT-B/16 results for completeness.



Dataset Method
Number of Image Shots

0 1 2 4

ImageNet-ESC-19

Image-Only Linear Probing - 68.00(4.17) 75.67(4.62) 83.05(2.52)
Image-Audio Linear Probing - 69.33(3.97) 76.66(4.32) 83.22(3.77)
Image-Text Linear Probing - 85.69(5.36) 86.94(2.41) 89.21(3.04)

Image-Audio-Text Linear Probing - 82.34(2.66) 84.08(1.95) 87.33(1.68)
Audio-initialized Classifier 36.74(9.36) - - -
Text-initialized Classifier 84.95(0.00) - - -

ImageNet-ESC-27

Image-Only Linear Probing - 60.13(3.97) 71.81(2.96) 79.01(2.50)
Image-Audio Linear Probing - 60.87(4.41) 73.32(2.46) 78.94(2.66)
Image-Text Linear Probing - 84.15(3.10) 85.17(2.48) 88.35(0.80)

Image-Audio-Text Linear Probing - 75.96(2.77) 79.81(1.95) 83.41(1.19)
Audio-initialized Classifier 30.37(7.13) - - -
Text-initialized Classifier 82.96(0.00) - - -

Table 15. ImageNet-ESC image-classification results.

Dataset Method
Number of Audio Shots

0 1 2 4

ImageNet-ESC-19

Audio-Only Linear Probing - 31.21(5.45) 41.11(5.12) 48.51(3.79)
Audio-Image Linear Probing - 35.74(4.85) 45.94(4.99) 51.59(3.40)
Audio-Text Linear Probing - 38.74(5.51) 50.09(3.45) 53.90(1.96)

Audio-Image-Text Linear Probing - 42.33(4.06) 49.32(4.67) 53.61(2.44)
Image-initialized Classifier 34.21(1.17) - - -
Text-initialized Classifier 38.16(0.00) - - -

ImageNet-ESC-27

Audio-Only Linear Probing - 28.20(3.26) 39.00(3.42) 47.13(2.71)
Audio-Image Linear Probing - 35.01(4.06) 43.51(3.47) 48.46(3.37)
Audio-Text Linear Probing - 36.76(5.54) 45.69(4.04) 50.56(2.19)

Audio-Image-Text Linear Probing - 36.06(5.36) 46.19(2.96) 50.79(2.49)
Image-initialized Classifier 29.00(0.84) - - -
Text-initialized Classifier 31.02(0.00) - - -

Table 16. ImageNet-ESC audio-classification results.



Method Template Number of shots

1 2 4 8 16

ProDA [63] 36 Learned Templates 65.19 68.59 71.49 74.21 76.78

Linear

Class name 62.34(0.88) 65.75(1.31) 69.95(0.53) 73.29(0.72) 76.66(0.30)
a photo of a {cls}. 63.87(0.88) 66.59(1.40) 70.71(0.61) 73.75(0.62) 76.85(0.38)

HandEngineered [111] 64.52(1.43) 67.31(1.26) 70.97(0.51) 73.77(0.84) 77.21(0.41)
Template Mining (21 views) 64.37(1.38) 67.62(1.03) 71.00(0.70) 74.17(0.61) 77.15(0.47)

Partial

Class name 62.58(1.87) 66.46(0.81) 70.29(0.61) 74.22(0.51) 77.73(0.57)
a photo of a {cls}. 64.38(1.14) 67.48(0.67) 70.59(1.38) 74.68(0.45) 78.34(0.45)

HandEngineered [111] 65.01(1.17) 68.05(0.64) 71.10(0.67) 74.83(0.50) 78.60(0.40)

Template Mining (21 views) 64.89(1.16) 68.03(0.74) 71.04(0.97) 74.90(0.43) 78.37(0.40)

Table 17. Comparison to ProDA. Since ProDA uses their own separate test split without releasing the code, it is not directly comparable
to numbers reported in Table 1. Therefore, we reported results here with our best attempt to replicate their dataset split by using the official
test splits of the datasets when available (Food101 [6] and DTD [14]). Note that ProDA reported results using 36 learned prompts, whereas
our template mining only uses 21 templates searched on few-shot validation set without any learning. Since we do not know whether
ProDA uses augmentation, we report center crop results in this table. Still, our approach is generally more performant than ProDA and we
do not require deep finetuning which takes 100x training time.



180 Templates (⇤ indicates not in CoOp codebase)
{cls}⇤ a tattoo of the {cls}. a video of the person {cls}.

a photo of a {cls}.⇤ a photo of a person during {cls}. a example of a person {cls}.
a picture of this {cls}.⇤ a photo of a clean {cls}. a photo of a small {cls}.

a photo of my {cls}.⇤ a photo of a {cls} texture. a photo of the small {cls}.
that is a {cls} photo.⇤ a bad photo of a {cls}. the {cls} in a video game.
a picture of a {cls}.⇤ a video of the person during {cls}. a demonstration of a person {cls}.

a {cls} photo.⇤ a drawing of the {cls}. a photo of one {cls}.
this is a {cls} photo.⇤ a close-up photo of the {cls}. a video of a person using {cls}.
a photo of these {cls}.⇤ a video of a person {cls}. a blurry photo of a {cls}.
a picture of my {cls}.⇤ a good photo of a {cls}. a photo of a person practicing {cls}.

a {cls} picture.⇤ a photo of a {cls} thing. a photo of a {cls}, a type of flower.
that is a {cls} picture.⇤ a demonstration of the person practicing {cls}. a painting of a {cls}.
a picture of those {cls}.⇤ itap of a {cls}. a example of the person {cls}.
this is a {cls} picture.⇤ a photo of a {cls} pattern. a example of the person performing {cls}.

that is a photo of a {cls}.⇤ itap of the {cls}. a rendition of the {cls}.
a photo of your {cls}.⇤ a demonstration of a person using {cls}. a cropped photo of a {cls}.

a picture of some {cls}.⇤ a cropped photo of the {cls}. the origami {cls}.
a photo of those {cls}.⇤ a example of the person practicing {cls}. a photo of the person {cls}.
a picture of these {cls}.⇤ a bright photo of a {cls}. a example of the person doing {cls}.

{cls}, a picture.⇤ a photo of the hard to see {cls}. a photo of the large {cls}.
a photo of an {cls}.⇤ a photo of a person using {cls}. a example of a person doing {cls}.

a picture of the {cls}.⇤ a rendition of a {cls}. a video of a person doing {cls}.
{cls}, a photo.⇤ a demonstration of a person during {cls}. a sketch of the {cls}.

a photo of this {cls}.⇤ graffiti of the {cls}. a photo of a nice {cls}.
a photo of the {cls}.⇤ a toy {cls}. a good photo of the {cls}.

this is a photo of a {cls}.⇤ a jpeg corrupted photo of the {cls}. a photo of a person performing {cls}.
a picture of your {cls}.⇤ a photo of the weird {cls}. a pixelated photo of the {cls}.

a photo of a {cls}.⇤ a photo of a cool {cls}. a photo of the dirty {cls}.
a picture of that {cls}.⇤ a video of the person practicing {cls}. a photo of my new {cls}.
a photo of some {cls}.⇤ the plushie {cls}. a sculpture of the {cls}.
a photo of my {cls}.⇤ a low resolution photo of a {cls}. a photo of the person doing {cls}.
a photo of the {cls}.⇤ a photo of the person performing {cls}. a photo of a {cls}, a type of pet.
a photo of that {cls}.⇤ the cartoon {cls}. a centered satellite photo of the {cls}.
a picture of an {cls}.⇤ a video of a person practicing {cls}. a photo of the {cls} texture.

a photo of the {cls}, a type of aircraft. a photo of a {cls}, a type of aircraft. a photo of a hard to see {cls}.
a bad photo of the {cls}. a photo of the person using {cls}. a black and white photo of a {cls}.
a photo of my dirty {cls}. a centered satellite photo of {cls}. itap of my {cls}.

a example of a person during {cls}. a example of a person performing {cls}. a video of the person doing {cls}.
a demonstration of the person doing {cls}. a {cls} in a video game. a demonstration of the person performing {cls}.

a demonstration of a person performing {cls}. i love my {cls}! art of a {cls}.
a photo of the person practicing {cls}. a example of a person using {cls}. a black and white photo of the {cls}.

a photo of a large {cls}. a example of the person using {cls}. a photo of the clean {cls}.
a photo of a weird {cls}. a jpeg corrupted photo of a {cls}. a photo of the nice {cls}.
a photo of a person {cls}. a blurry photo of the {cls}. a doodle of the {cls}.

a video of a person during {cls}. a painting of the {cls}. a close-up photo of a {cls}.
a photo of the {cls} thing. a sculpture of a {cls}. a low resolution photo of the {cls}.

the embroidered {cls}. a demonstration of the person using {cls}. a dark photo of a {cls}.
a photo of a {cls} object. a sketch of a {cls}. a video of the person performing {cls}.
a dark photo of the {cls}. a drawing of a {cls}. a photo of a dirty {cls}.

a photo of {cls}, a type of food. a photo of the {cls} pattern. a cartoon {cls}.
a example of the person during {cls}. a photo of the cool {cls}. the plastic {cls}.
a video of a person performing {cls}. a photo of the {cls} object. a photo of my clean {cls}.

a photo of many {cls}. a video of the person using {cls}. a photo of my old {cls}.
a photo of a person doing {cls}. a demonstration of the person during {cls}. a pixelated photo of a {cls}.

a plushie {cls}. a centered satellite photo of a {cls}. a demonstration of the person {cls}.
art of the {cls}. a tattoo of a {cls}. a doodle of a {cls}.

a photo of the person during {cls}. graffiti of a {cls}. the toy {cls}.
a bright photo of the {cls}. a demonstration of a person practicing {cls}. a plastic {cls}.

a rendering of a {cls}. a embroidered {cls}. a rendering of the {cls}.
a origami {cls}. a example of a person practicing {cls}. a demonstration of a person doing {cls}.

Table 18. Templates used during template mining. Most of the templates we use come from the original CoOp codebase [113]. In
addition, we add 31 random templates by paraphrasing [45] the standard template a photo of a {cls}. We encourage future work
to try out more sophisticated techniques to generate templates, e.g. through automated prompting [113] or with the help of language
models [45].
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