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Overview
This supplementary material presents more details and ad-
ditional results not included in the main paper due to page
limitation. The list of items included are:

• More experiment setup and details in Sec. A.

• Efficiency comparison with SOTA in Sec. B.

• Experiment on AGORA dataset in Sec. C.

• More introduction of UBody in Sec. D.

• Inter-scene benchmark on UBody dataset in Sec. E.

• Qualitative comparisons with SOTA in Sec. F.

A. Experiment Setup
Evaluation metrics. To quantitatively evaluate the per-
formance of human mesh recovery, MPVPE, PA-MPVPE,
MPJPE, and PA-MPJPE are used as evaluation metrics. Be-
sides, we also report normalized mean vertex error (NMVE)
and normalized mean joint error (NMJE) by the standard
detection metric, F1 score (the harmonic mean of recall and
precision) to penalize models for misses and false positives
on AGORA test set with many multi-person scenes.
Implementation details. Our OSX model is implemented
in Pytorch. It is trained with Adam optimizer (β1 =
0.1, β2 = 0.999) using the Cosine Annealing scheme for
14 epochs. The learning rate is initially set to 1 × 10−4.
The batch size is set to 192. Random scaling, rotation, hor-
izontal flip, and color jittering are used as data augmenta-
tions during training. The spatial size of the input image is
256× 192. The number of body tokens Tb and component
tokens Tc are set to 27 and 92, respectively. During exper-
iments on the AGORA-test set, we remove the decoder as
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we find that the decoder increases training time and does
not significantly improve performance on AGORA-test set.
This observation may be attributed to the fact that the main
problem of AGORA is occlusion, while the decoder aims to
estimate hands/face at a finer level.

B. Efficiency comparison with SOTA methods

We report the complexity comparisons including average
inference time, number of model parameters, FLOPs, and
the NMJE-All on AGORA-test in Table S-1. The numbers
are measured for single-person regression on the same res-
olution input using a machine with an NVIDIA A100 GPU.
OSX has the shortest inference time and lowest error, indi-
cating the advantages in practical applications.

Method ExPose [34] PIXIE [13] H4W [27] PyMAF-X [48] OSX

NMJE-All (mm) 263.3 230.9 141.1 140.0 127.6
Infer Time (ms) 120.2 192.0 73.3 209.3 54.6

Params (M) 135.8 192.9 77.9 205.9 102.9
FLOPS (G) 28.5 34.3 16.7 35.5 25.3

Table S-1. Efficiency comparisons with multi-stage methods.

C. Experiment on AGORA Dataset

In this part, we report the complete result on the AGORA
test set and the experiment result on the AGORA val set.
AGORA Test Set. Table S-2 depicts the complete result
on the AGORA test set. All the results are taken from the
official leaderboard. As shown, our OSX outperforms other
competitors on most metrics, especially on the evaluation of
the body and full-body recovery. More specifically, for full-
body reconstruction, OSX even surpasses PyMAF-X [33]
by 10.6 mm, 9.1 mm, 2.9 mm, and 4.7 mm on NMVE,
NMJE, MVE, and MPJPE, respectively. Since PyMAF-
X has a lower detected person ratio, they have similar re-
sults on MVE and MPJPE metrics, which only calculate
the matched person. The NMVE and NMJE will take the
misses and false positives into account, and we have overall
better multi-person estimation with more improvement un-
der the metrics. Notably, although OSX does not use extra
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Method
NMVE ↓ NMJE ↓ MVE ↓ MPJPE ↓

Full-Body Body Full-Body Body Full-Body Body Face LH/RH Full-Body Body Face LH/RH

SMPLify-X [20] 333.1 263.3 326.5 256.5 236.5 187.0 48.9 48.3/51.4 231.8 182.1 52.9 46.5/49.6
ExPose [19] 265.0 184.8 263.3 183.4 217.3 151.5 51.1 74.9/71.3 215.9 150.4 55.2 72.5/68.8
FrankMocap [26] - 207.8 - 204.0 - 168.3 - 54.7/55.7 - 165.2 - 52.3/53.1
PIXIE [4] 233.9 173.4 230.9 171.1 191.8 142.2 50.2 49.5/49.0 189.3 140.3 54.5 46.4/46.0
Hand4Whole [16] † 144.1 96.0 141.1 92.7 135.5 90.2 41.6 46.3/48.1 132.6 87.1 46.1 44.3/46.2
PyMAF-X [33] † 141.2 94.4 140.0 93.5 125.7 84.0 35.0 44.6/45.6 124.6 83.2 37.9 42.5/43.7

OSX (Ours) † 130.6↓7.5% 85.3↓9.6% 127.6↓8.9% 83.3↓10.9% 122.8 80.2 36.2 45.4/46.1 119.9 78.3 37.9 43.0/43.9

Table S-2. Reconstruction errors on the AGORA test set. † denotes the methods that are fine-tuned on the AGORA training set or similarly
synthetic data [11]. The best results are shown in bold and the second best results are highlighted with underlined font.

hand-only and face-only datasets, it can achieve competi-
tive results on hand and face metrics, which demonstrates
the effectiveness of our component-aware decoder.
AGORA Val Set. Table S-3 shows the result on the
AGORA val set. All the results are taken from [16] ex-
cept OSX. Although we do not use extra hand/face spe-
cific datasets during training, OSX outperforms the SOAT
method Hand4Whole by 8.3% on the MPVPE-all, demon-
strating the effectiveness of our one-stage method.

Method
MPVPE ↓ PA-MPVPE ↓

All Hand Face All Hand Face

ExPose [19] 219.8 115.4 103.5 88.0 12.1 4.8
FrankMocap [26] 218.0 95.2 105.4 90.6 11.2 4.9
PIXIE [4] 203.0 89.9 95.4 82.7 12.8 5.4
Hand4Whole [16] 183.9 72.8 81.6 73.2 9.7 4.7
OSX (Ours) 168.6↓8.3% 70.6 77.2 69.4 11.5 4.8

Table S-3. Reconstruction errors on the AGORA val set.

D. UBody: An Upper Body Dataset
D.1. Data Collection

To bridge the gap between the basic human mesh recov-
ery task and its downstream applications, we design UBody
with two rules. First, we research a wide range of human-
related downstream tasks with upper-body scenes, includ-
ing gesture recognition [7, 15, 30], sign language recogni-
tion, and translation [2, 3, 10, 24, 28, 34], person cluster-
ing [1], emotion analysis, speaker verification [17], micro-
gesture understanding [14], audio-visual generation and
separation [23], human action recognition, and localiza-
tion [5, 6, 21, 25, 27], and human video segmentation [12].
We select the corresponding high-quality datasets from
these existing tasks as a part of our data for the correspond-
ing scenarios. In order to ensure a balanced amount of data
for each scene, for datasets with many videos (e.g., last-
ing 20k minutes), we manually selected the videos in which
the upper body appeared more frequently. Second, with all
kinds of athletic competitions, entertainment shows, we me-
dia, online conferences, and online classes being more and
more indispensable, we carefully selected a large number
of rich videos from YouTube to provide new opportuni-

ties and challenges for potential applications. Since some
untrimmed videos may have missing main characters, ex-
traneous images such as opening and closing credits, and
repetitive actions, we manually fine-cut the long videos.
Each edited video is 10 seconds long, which ensures the
high quality of the video. In order to prevent infringement
of ownership rights, we only provide download links to the
corresponding videos and our labels without any personal
information. In summary, we collect fifteen real-life sce-
narios with more than 105,1k frames. We split the train/test
sets from two protocols as follows.

• Intra-scene: in each scene, the former 70% of the
videos are the training set, and the last 30% are the test
set. The benchmark was provided in the main paper.

• Inter-scene: we use ten scenes of the videos as the
training set and the other five scenes as the test set.
Due to the page limit, we present the benchmark in
Table S-4.

D.2. Data Annotation Processes

As shown in Figure S-1, we design a thorough whole-
body annotation pipeline with high precision. It is di-
vided into two stages: 2D whole-body keypoint annotation
and 3D SMPLX annotations fitting. Since UBody scenes
have a number of unpredictable transitions and cutscenes
that make it difficult to use the temporal smoothing ap-
proaches [22,31,32], the annotation is conducted on a single
frame.
2D whole-body keypoint annotation: We first detect all
persons and their hands in an image via a specific human
and hand detector BodyHands [18] shown as Body Detec-
tor and Hand Detector in Figure S-1. Leveraging the recent
state-of-the-art 2D pose estimator ViT-Body-only [29], we
use the pre-trained model trained on the COCO [13] dataset
to localize 17 body keypoints for each detected single per-
son, named KBody, which shows highly robust results on
many scenes. Due to the diverse scales and motion blur
for the fast-moving hands, we find that Hand Detector will
output false positive samples or miss some hands. To en-
hance the performance of hand detection, we train a 2D
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Figure S-1. Illustration of the annotation pipeline of UBody. Black lines show the annotation process of 2D whole-body keypoints, and
blue lines are the 3D SMPL-X annotation procedure. Red dotted lines mean to update the information.

whole-body estimator on COCO-wholeBody [9] with 133
2D keypoints, called ViT-WholeBody following the model
design of ViTPose [29] and masked autoencoder pre-trained
scheme [8]. ViT-WholeBody can provide high-recall hand
keypoints KHand, but the localization precision is low be-
cause of the fully one-stage pipeline and low-resolution of
hands from the raw image. Accordingly, We can obtain
coarse hand bounding boxes by calculating the maximum,
and minimum values of the detected left and right-hand key-
points to correct the hand boxes from Hand Detector via an
IoU matching strategy. Then, we use the fine hand boxes
to crop the hand patches, resize them to a larger size, and
put them into our specific pre-trained ViT-Hand-only model
trained with the hand labels from the COCO-Whole dataset.
In summary, ViT-WholeBody will output the body, hand, and
face 2D keypoints. We use the body output from ViT-Body-
only to replace the KBody, and use the fine hand keypoints
from ViT-Hand-only to change the KHand. As the face of
the current SMPL-X model does not require much detail,
we simply use the 2D face keypoints KFace obtained from
ViT-WholeBody.
3D whole-body mesh recovery annotation: Different
from previous optimization-based annotation [20] that may
output implausible poses, we use our proposed OSX to es-
timate the SMPL-X parameters from human images as a
proper 3D initialization to provide pseudo-3D constraints.
Benefiting from current 2D keypoint localization that tends
to be more accurate, we additionally supervise the pro-
jected 2D whole-body keypoints by the above annotated 2D
whole-body keypoints as a way to train OSX. More impor-
tantly, to avoid performance degradation from not accurate
enough initial labeling and consistently push up the 3D an-
notation quality, we propose an iterative training-labeling-
revision loop for every 30 epochs to train 120 epochs in
total.

E. Inter-Scene Benchmark on UBody dataset

Due to the page limit, we further provide another data
protocol comparison to show the usage of the proposed
UBody. Table S-4 presents the performance comparisons
of existing 3D whole-body methods. Inter-scene test shows

large errors than the intra-scene test due to the different
motion and gesture distributions. The model finetuned
on AGORA still has a significant gap than trained on the
COCO dataset. Furthermore, we also train Hand4Whole
and UBody on our training set, we can find a consistent
improvement compared to the original pretrained model,
indicating that UBody can serve to bridge the gap among
these downstream real-life scenes. Moreover, different from
single-frame AGORA and EHF, UBody provides videos,
which can drive progress in spatial-temporal modeling on
such edit media sources.

Method
MPVPE ↓ PA-MPVPE ↓

All Hand Face All Hand Face

ExPose [19] 185.7 89.5 47.2 76.4 11.8 4.0
PIXIE [4] 185.0 60.9 45.3 74.5 11.9 4.2
Hand4Whole [16]× 198.1 66.9 51.8 90.2 10.3 4.1
Hand4Whole [16] 109.4 50.4 24.8 57.0 8.9 2.7
Hand4Whole [16]† 87.4 41.6 22.1 46.3 8.0 2.0

OSX (Ours) 100.7 52.5 24.5 52.9 9.5 2.6
OSX (Ours)† 82.0 44.2 21.5 44.2 8.8 1.9

Table S-4. Reconstruction errors on UBody test set on the inter-
scene protocol. All models are pretrained on previous datasets,
except for the results labeled by (i) †: finetuned on the UBody
training data; (ii) ×: finetuned on the AGORA training data.

F. Qualitative with SOTA method

Qualitative comparisons on AGORA: We compare the
mesh quality on the AGORA dataset in Figure S-2. Agora
is a synthetic dataset with many challenging factors like
heavy occlusion, dark environment, and unnatural multi-
person interaction. It only has limited actions, e.g., taking
phones, walking, sitting, etc. We can see OSX outperforms
ExPose [19] and Hand4Whole [16] consistently in terms of
global body orientations, whole-body poses, and hand pose.
Qualitative comparisons on EHF: The visual compar-
isons of whole-body mesh recovery quality on the EHF
dataset can be found in Figure S-3. As can be seen, OSX
estimates the most accurate whole-body poses, in which the
body parts like hands, feet, and hands are better aligned with
the person in the image.
Qualitative comparisons on UBody: The qualitative com-



(a) Input image (b) ExPose (c) Hand4Whole (d) OSX (Ours) (e) Input image (f) ExPose (g) Hand4Whole (h) OSX (Ours)

Figure S-2. Comparisons of existing 3D whole-body estimation methods on AGORA.

parison on our UBody is in Figure S-4. UBody focuses more
on the expressive upper body part. Hand4Whole [16] and
our OSX produces better body mesh recoveries than Ex-
Pose [29]. Close inspection of the hand part shows that our
hand recovery is more accurate than Hand4Whole.
Visualization of our annotation on UBody: The visual-
izations of our SMPL-X annotation in our UBody can be
found in Figure S-5, S-6, and S-7. Our annotation produces
high-quality ground truth. In many challenging cases of ex-
pressive hand poses, our estimated mesh can capture fine-
level details.
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Figure S-5. Illustration of the ground-truth SMPL-X annotation for the eight scenes in UBody. For each scene, we show the input image
(the upper) and our annotation (the lower).
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Figure S-6. Illustration of the ground-truth SMPL-X annotation for seven other scenes in UBody. For each scene, we show the input image
(the upper) and our annotation (the lower).
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Figure S-7. Illustration of the ground-truth SMPL-X annotation for some special cases: multi-person scenes and full body scenes in UBody.
Our annotation pipeline can still work well on these scenes.


