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1. Pseudo-Code of OT-M

Algo. 1 summarizes the procedure of OT-M algorithm.
At the beginning, the number of elements in B is calcu-
lated by summing up [ai] in A, and then initializing [yj ]
randomly using top-k, uniform, or adaptive initialization.
After that, OT-step and M-step are performed repetitively.

In k-th OT-step, cost matrix C(k) is firstly computed be-
tweenA and B(k), and the Gibbs kernel is obtained accord-
ingly. Next, the Sinkhorn algorithm is implemented in a
sub-loop to find v̂ and û, which are then used to construct
the k-th transport plan P(k) = diag(û)K(k)diag(v̂).

In k-th M-step, the barycenter of density assigned to j-th
point in B(k−1) by transport plan P(k) is calculated as the
updated coordinates, y(k)

j . On CPU, M-step is implemented
via a loop (Line.14∼17 in Algo. 1). However, the loop can
be performed in parallel, and thus the M-step reduces to one
step using matrix operations on GPU:

y = diag
(
P⊤1m

)
P⊤x. (1)

Once the stopping criterion is met, OT-M will be stopped
and return the final solution, B̂ = {ŷj}mj=1.

The source code is available at https://github.
com/Elin24/OT-M.

2. GMM for Localization with Density Map

Besides the proposed OT-M algorithm, Gaussian Mix-
ture Model(GMM) can also be used to locate objects on
density map [1]. For convenience, we normalize A =
{(ai,xi)}ni=1 (

∑n
i=1 ai = 1) so that ai and xi ∈ R2 in-

dicate the normalized density value and coordinate of the
i-th pixel. In GMM, B = {(bj ,yj , σ

2
j )}mj=1 is a set of m

independent Gaussian distributions. The mean of j-th one
is yj , its weight is bj and the covariance is σ2

j I2×2.
GMM is solved through Expectation-Minimization

(EM) algorithm. We compute the soft assignments in the
(l+1)-th E-step. In particular, the likelihood that assigns the
i-th density pixel to the j-th Gaussian distribution is formu-

Algorithm 1 OT-M Algorithm
Input: Soft label A = {ai,xi}ni=1, the blur factor ε.
Output: Hard label B.

1: Get the size of B: m = ⌊
∑n

i=1 ai⌉.
2: Initialize B(0) = {y(0)

j }mj=1 with y
(0)
j ∈ R2 randomly.

3: Normalize a&b for balanced OT: a = a
∥a∥ , b = b

∥b∥ .
4: repeat
5: {OT-step}
6: Compute the cost matrix C(k) according to squared

Euclidean distance: C(k)
ij = ∥xi − y

(k)
j ∥22

7: Get Gibbs kernel K(k) ← exp(C(k)/ε).
8: Initialize v(0) ← 1m.
9: repeat

10: u(l+1) ← a/
(
K(k)v(l)

)
,

11: v(l+1) ← b/
(
K(k)⊤u(l+1)

)
,

12: until reaching an equilibrium state with v̂ and û.
13: Calculate plan P(k) = diag(û)K(k)diag(v̂)
14: {M-step}
15: for j ← 1 to m do
16: y

(k)
j ←

(∑n
i=1 P

(k)
ij xi

)
/
(∑n

i=1 P
(k)
ij

)
17: end for
18: until [y(k)

j ] converges to [ŷj ].
19: return B̂ = {ŷj}mj=1.

lated as:

ẑij = p(zi = j|xi,B(l)) =
bjN (xi|yj , σ

2
j )∑m

k=1 bkN (xi|yk, σ
2
k)

, (2)

whereN is the 2D Gaussian distribution. After all ẑij is ob-
tained, we update B in M-step by minimize the likelihood,
and the solution is:

y
(l+1)
j =

1

N̂j

n∑
i=1

aiẑijxi, N̂j =

n∑
i=1

aiẑij , (3)

Besides, the parameters in Gaussian distrubtions are up-
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gate confidence MAE MSE
127.69±4.52 216.50±11.45

! 123.85±5.92 212.23±12.02
! 125.32±7.62 214.96±12.57
! ! 120.13±7.34 208.87±11.65

Table S1. Detailed ablation on components of confidence-
weighted generalized loss.

dated according to:

σ
(l+1)
j =

√√√√ 1

N̂j

n∑
i=1

aiẑij∥xi − yj∥22 (4)

b
(l+1)
j =

N̂j∑n
i=1 ai

=
N̂j

m
(5)

In practice, we give a limitation that 1 ≤ σj ≤ 16 and
bj =

1
m for reasonable estimation.

3. Ablation Study on C-GL
In Tab S1, we present details of the ablation study on

the proposed confidence-weighted generalized loss, includ-
ing the gating scheme and confidence weighting strategy.
When vanilla GL is adopted as the loss function, the av-
erage MAE is 127.69. While only a confidence strategy
is adopted, MAE is reduced to 123.85. Meanwhile, if only
gate scheme is used, MAE and MSE are 125.32 and 214.96,
respectively. However, combining them yields the low-
est estimation errors (e.g., MAE: 127.69 → 120.13, MSE:
216.50→ 208.87).

4. Ablation Study on γ

Fig. S1 discusses the influence of different γ used in con-
fidence weights (Eq. 20 in the paper). γ = 0 means confi-
dence is not added in GL, which yields higher MAE and
MSE. With the increase of γ, estimation errors are reduced
gradually. However, both metrics increase while a large γ
is adopted. Thus, in our experiments we set γ = 0.5.

5. More Examples of OT-M
Fig. S2 and Fig. S3 present more examples demonstrat-

ing the convergence process of OT-M on synthetic density
maps (produced using Gaussian kernels applied to point-
maps) and density maps predicted by a CNN, respectively.

In Fig. S4, we present two examples to visualize the in-
fluence of the initialization methods. GMM’s results are
dramatically affected by the initialization – the three initial-
ization methods produce results that are different from each
other. Compared with GMM, OT-M is much more robust
since OT-M’s point maps are similar and close to ground
truth.
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Figure S1. The effect of γ on semi-supervised counting perfor-
mance.

6. Limitation
OT-M algorithm is limitted by its efficency. We test a

demo image with a resolution of 384× 896. The runtime of
P2PNet [5] is 0.016s. The runtime of OT-M consists of two
parts: density map estimation (0.013s); and OT-M (0.067s),
and the total runtime is 0.080s. OT-M costs more time be-
cause of the OT & M iterations. Although M-step is reduced
to one step by (1), the loop to obtain the optimal transport
map (i.e., the Sinkhorn algorithm) takes about 0.023s for 35
rounds.

During semi-supervised training, input images are
cropped into 512 × 512. The average training time is 0.34
seconds per sample. For comparison, GP [4], IRAST [3],
and DAC [2] take 0.05s, 0.47s, and 0.07s.
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input image density map iteration = 1 iteration = 2 iteration = 4 iteration = 8 Ground Truth

Figure S2. The convergence process of OT-M when synthetic density maps are used.

input image density map iteration = 1 iteration = 2 iteration = 4 iteration = 8 Ground Truth

Figure S3. The convergence process of OT-M when density maps are predicted by CNN.
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Figure S4. The predicted point maps using different initializations (topk, uniform, adaptive) for OT-M and GMM localization..


	. Pseudo-Code of OT-M
	. GMM for Localization with Density Map
	. Ablation Study on C-GL
	. Ablation Study on 
	. More Examples of OT-M
	. Limitation

