
7. Appendix
7.1. Implementation Details for Model Training

Self-supervised pretraining. We pre-train our Vision Transformer backbone and projection head following the same
pipeline in iBOT [88]. Most of the hyper-parameter settings are kept unchanged without tuning. Vit-Small, which has
∼21M parameters is used as our default architecture. Our default patch size is set as 16. For the student network, the [cls]
token output and [patch] tokens output share the same projection head. This head-sharing strategy is also applied to the
teacher network. For both networks, we set the output dimension of projection heads as 8192. We linearly warm up the learn-
ing rate for 10 epochs to its base value of 5e-4, then use cosine schedule to decay it to 1e-5. Cosine schedule is also used for
weight decay from 0.04 to 0.4. Besides, we use the multi-crop strategy [6] with 2 global crops (224×224) and 10 local crops
(96×96), with scale range (0.4, 1.0) and (0.05, 0.4) respectively. We found that allowing knowledge distillation between
global and local crops from intra-class images harms the performance, which is consistent with [88]. Therefore, local crops
here are only used for self-distillation with global crops from the same image. Furthermore, we apply blockwise masking on
global crops sent into the student network, with a masking ratio uniformly sampled from [0, 1, 0.5] with probability 0.5, and
0 with probability 0.5. Ablation of different masking strategies is given in Sec. 7.3. Our batch size is set as 640 (batch size
per GPU equal to 80). mini-ImageNet and tiered-ImageNet are pre-trained for 1200 epochs, and CIFAR-FS and FC100 are
pre-trained for 900 epochs. All models are trained on 8 Nvidia RTX 3090 GPUs.

Supervised knowledge distillation. After finishing the pretraining stage, we train the model with our supervised-
contrastive loss. The best evaluation accuracy on the validation set can usually be achieved within 60 epochs of training.
We use the same set of hyper-parameters as the first pretraining stage without further tuning. Ablation of the scaling param-
eter λ, which controls the relative size of L[patch] and L[cls] is given in Sec. 7.3.

7.2. Few-shot Evaluation Results

We present few-shot evaluation results with more methods on the four benchmark datasets here in Table 9 and 10. ViT-
based methods are better than the traditional CNN-based methods in general. The ranking of our method remains unchanged.

Table 9. More comprehensive few-shot evaluation results on mini-ImageNet and tiered-ImageNet. Top three methods are colored in
red, blue and green respectively.

Method Backbone #Params miniImageNet,5-way tieredImageNet,5-way
1-shot 5-shot 1-shot 5-shot

DeepEMD [83] ResNet-12 12.4M 65.91± 0.82 82.41± 0.56 71.16± 0.87 86.03± 0.58
IE [58] ResNet-12 12.4M 67.28± 0.80 84.78± 0.52 72.21± 0.90 87.08± 0.58

BML [89] ResNet-12 12.4M 67.04± 0.63 83.63± 0.29 68.99± 0.50 85.49± 0.34
PAL [48] ResNet-12 12.4M 69.37± 0.64 84.40± 0.44 72.25± 0.72 86.95± 0.47

TPMN [74] ResNet-12 12.4M 67.64± 0.63 83.44± 0.43 72.24± 0.70 86.55± 0.63
MN+MC [84] ResNet-12 12.4M 67.14± 0.80 83.82± 0.51 74.58± 0.88 86.73± 0.61

DC [78] ResNet-12 12.4M 68.57± 0.55 82.88± 0.42 78.19± 0.25 89.90± 0.41
MELR [20] ResNet-12 12.4M 67.40± 0.43 83.40± 0.28 72.14± 0.51 87.01± 0.35

COSOC [47] ResNet-12 12.4M 69.28± 0.49 85.16± 0.42 73.57± 0.43 87.57± 0.10
CSEI [42] ResNet-12 12.4M 68.94± 0.28 85.07± 0.50 73.76± 0.32 87.83± 0.59
CNL [86] ResNet-12 12.4M 67.96± 0.98 83.36± 0.51 73.42± 0.95 87.72± 0.75
FEAT [80] WRN-28-10 36.5M 65.10± 0.20 81.11± 0.14 70.41± 0.23 84.38± 0.16

Meta-QDA [85] WRN-28-10 36.5M 67.38± 0.55 84.27± 0.75 74.29± 0.66 89.41± 0.77
OM [53] WRN-28-10 36.5M 66.78± 0.30 85.29± 0.41 71.54± 0.29 87.79± 0.46
SUN [17] ViT 12.5M 67.80± 0.45 83.25± 0.30 72.99± 0.50 86.74± 0.33

FewTURE [36] ViT-S 21.0M 68.02± 0.88 84.51± 0.53 72.96± 0.92 86.43± 0.67
FewTURE [36] Swin-Tiny 29.0M 72.40± 0.78 86.38± 0.49 76.32± 0.87 89.96± 0.55

HCT (Prototype) [79] 3×ViT-S 63.0M 74.74± 0.17 85.66± 0.10 79.67± 0.20 89.27± 0.13
HCT (Classifier) [79] 3×ViT-S 63.0M 74.62± 0.20 89.19± 0.13 79.57± 0.20 91.72± 0.11

Ours (Prototype) ViT-S 21.0M 74.28± 0.18 88.82± 0.09 78.83± 0.20 91.02± 0.12
Ours (Classifier) ViT-S 21.0M 74.10± 0.17 88.89± 0.09 78.81± 0.21 91.21± 0.11
Ours + HCT [79] 3×ViT-S 63.0M 75.32± 0.18 89.57± 0.09 79.74± 0.20 91.68± 0.11



Table 10. More comprehensive few-shot evaluation results on CIFAR-FS and FC100. Top three methods are colored in red, blue and
green respectively.

Method Backbone #Params CIFAR-FS,5-way FC100,5-way
1-shot 5-shot 1-shot 5-shot

DSN-MR [60] ResNet-12 12.4M 75.60± 0.90 86.20± 0.60 - -
BML [89] ResNet-12 12.4M 73.45± 0.47 88.04± 0.33 45.00± 0.41 63.03± 0.41

IE [58] ResNet-12 12.4M 77.87± 0.85 89.74± 0.57 47.76± 0.77 65.30± 0.76
PAL [48] ResNet-12 12.4M 77.10± 0.70 88.00± 0.50 47.20± 0.60 64.00± 0.60

TPMN [74] ResNet-12 12.4M 75.50± 0.90 87.20± 0.60 46.93± 0.71 63.26± 0.74
MN+MC [84] ResNet-12 12.4M 74.63± 0.91 86.45± 0.59 46.40± 0.81 61.33± 0.71

RENet [37] ResNet-12 12.4M 74.51± 0.46 86.60± 0.32 - -
ConstellationNet [77] ResNet-12 12.4M 75.40± 0.20 86.80± 0.20 43.80± 0.20 59.70± 0.20
ALFA+MeTAL [2] ResNet-12 12.4M - - 44.54± 0.50 58.44± 0.42

MixtFSL [1] ResNet-12 12.4M - - 41.50± 0.67 58.39± 0.62
CC+rot [23] WRN-28-10 36.5M 73.62± 0.31 86.05± 0.22 - -
PSST [12] WRN-28-10 36.5M 77.02± 0.38 88.45± 0.35 - -

Meta-QDA [85] WRN-28-10 36.5M 75.95± 0.59 88.72± 0.79 - -
SUN [17] ViT 12.5M 78.37± 0.46 88.84± 0.32 - -

FewTURE [36] ViT-S 21.0M 76.10± 0.88 86.14± 0.64 46.20± 0.79 63.14± 0.73
FewTURE [36] Swin-Tiny 29.0M 77.76± 0.81 88.90± 0.59 47.68± 0.78 63.81± 0.75

HCT (Prototype) [79] 3×ViT-S 63.0M 78.89± 0.18 87.73± 0.11 48.27± 0.15 61.49± 0.15
HCT (Classifier) [79] 3×ViT-S 63.0M 78.88± 0.18 90.50± 0.09 48.15± 0.16 66.42± 0.16

Ours (Prototype) ViT-S 21M 80.08± 0.18 90.63± 0.13 50.38± 0.16 68.37± 0.16
Ours (Classifier) ViT-S 21M 79.82± 0.18 90.91± 0.13 50.28± 0.16 68.50± 0.16

7.3. Additional Ablation Studies

Why L[cls] + LMIM in stage 1? Our insight is that the [cls] tokens in global loss have better high-level semantics, but
often disregard the rich local structures. While the MIM loss LMIM constructed from [patch] tokens can remedy this
problem, increase task difficulty, and work as strong data augmentations. In Table 11, we can find that using both losses in
stage 1 gives the best results.

Table 11. Ablation of SSL tasks in stage 1 on mini-ImageNet.

Stage1 Stage2: L[cls] + L[patch]
L[cls] LMIM 1-shot 5-shot 1-shot 5-shot
X 58.55 78.90 72.93 88.07

X 27.66 33.82 37.03 50.95
X X 60.93 80.38 74.28 88.82

Masking Strategies. We use blockwise masking as our default in the main text. In Table 12, we test random mask and no
mask while keeping all other hyper-parameters unchanged. "Block Mask−→ No Mask" represents self-supervised pretraining
with blockwise masking, and supervised training with no mask. Using either a random mask or block mask can boost the
classification accuracy in the first self-supervised pretraining stage, but their advantage over no mask decreases in the second
supervised training stage. We choose blockwise masking as our default strategy since it balances 1 and 5-shot classification
accuracy the best.

Scaling Parameter λ. This parameter controls the relative importance of class-level and patch-level losses in our final loss:
L = L[cls] + λL[patch]. A relatively large value of λ will put more focus on localization and less on high-level semantics.
Here in Table 13, we test different λ values by keeping the base of L[cls] to 1 and scale L[patch]. As we can see, the λ
parameter influences 1-shot classification accuracy more than 5-shot. We choose λ = 0.25 as our default (which makes the
ratio of L[patch]/L[cls] roughly around 2) since it has best 1-shot performance and competitive 5-shot accuracy.



Table 12. Ablation over different masking strategy in self-supervised pretraning stage.

Masking Strategy Self-supervised Pre-train Supervised Training
1-shot 5-shot 1-shot 5-shot

No Mask 59.15± 0.17 79.23± 0.12 73.94± 0.17 88.93± 0.09
Block Mask 60.93± 0.17 80.38± 0.12 74.01± 0.17 88.89± 0.09

Random Mask 60.94± 0.18 79.62± 0.13 74.07± 0.18 88.66± 0.09
Block Mask −→ No Mask 60.93± 0.17 80.38± 0.12 73.44± 0.17 88.87± 0.09

Table 13. The influence of different ratio between L[cls] and L[patch].

L[patch]/L[cls] 1-shot 5-shot

≈4 (λ = 0.9) 73.45± 0.17 88.89± 0.09
≈2 (λ = 0.45) 74.28± 0.18 88.82± 0.09
≈1 (λ = 0.2) 74.01± 0.17 88.89± 0.09
≈0.5 (λ = 0.1) 73.11± 0.17 88.44± 0.09

Weighting Parameter ωk+ in L[patch]. This parameter in Eq.(5) gives weights to each component of our patch-level
contrastive loss L[patch]. We set ωk+ = 1/N in our main text due to its simplicity. In Table 14, we compare it (Simple Avg)
with another variant (Self-Attention Weighted Avg), which uses the averaged self-attention weights over attention heads of the
[cls] token with all [patch] tokens in the last attention layer of teacher network to aggregate pairwise patch matching
losses. As found in [7], the self-attention of ViTs is good at capturing foreground regions. So we use it here as a way to
highlight foreground objects and to attenuate irrelevant background information. Our default simple average outperforms
this variant on both 1 and 5-shot classification accuracies. One explanation is as follows. If the foreground objects of two
intra-class images differ a lot, then Self-Attention Weighted Avg tends to minimize L[patch] by decreasing the weights of the
losses associated with the patches covering these foreground objects, which makes our model deviate from optimum.

Table 14. Different weighting schemes of patch-level supervised-contrastive loss.

Weighting Scheme 1-shot 5-shot

Simple Avg 74.28± 0.18 88.82± 0.09
Self-Attention Weighted Avg 74.11± 0.18 88.52± 0.10

Comparison with smaller backbones: To make ViT-S (∼ 21M parameters) comparable with ResNet-12 (∼ 12M param-
eters), we trim by half either its embedding dimension (dembed) or the number of attention heads (#heads). From Table 15,
trimming #heads by half only results in little drop in accuracy, which still outperforms the best method with ResNet-12
backbones. The training speed also increases by 10% with fewer #heads. Given this result, our comparison now becomes
complete: our method outperforms both shallow (ResNet-12) and deep (WRN-28-10) CNN-based backbones, as well as
ViTs with the same (see Table 5) or more (see Table 3 & Table 4) parameters.

Table 15. ViT-S with similar size as ResNet-12 on mini-ImageNet

Backbone dembed #heads #param Stage1 Stage2
1-shot 5-shot 1-shot 5-shot

ViT-S 192 6 11M 60.70 79.56 71.14 87.12
ViT-S 384 3 11M 62.12 81.27 72.70 87.90
ViT-S 384 6 21M 60.93 80.38 74.28 88.82

ResNet12 - - 12M - - 69.37 85.16
WRN-28-10 - - 36M - - 67.38 85.29



7.4. Visualizations

We visualize more self-attention maps and dense correspondence in Fig. 6 and Fig. 7.

Figure 6. Visualization of multi-head self-attention maps. The self-attention of the [cls] tokens with different heads in the last
attention layer of ViT are visualized in different colors in the second column. The last six columns visualize each attention head. Images
are from the test set of mini-ImageNet.



Figure 7. Visualization of dense correspondence. We use the patches with the highest self-attention of the [cls] token on each attention
head (6 in total) of the last layer of ViT-S as queries. Best-matched patches with the highest similarities are connected with lines. Images
are from the validation and testing set of mini-ImageNet.
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