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For further insights into our ViTTA, we provide imple-
mentation details of TANet and Video Swin Transformer
(Sec. 1), introduction of the corruptions used in evaluation
(Sec.2) and additional experimental results (Sec. 3).

In Sec. 3.1, we compare the computation efficiency of
ViTTA with baseline methods. In Sec. 3.2. we report adap-
tation performance on time-correlated data. In Sec. 3.3, we
report the performance of adaptation to only a part of the
test set to validation the adaptation efficiency of ViTTA.
In Sec. 3.4, we compare the performance of adaptation to
a test set using train statistics from different datasets. In
Sec. 3.5, we perform an ablation study on the choice of mo-
mentum for moving average. Furthermore, we report stan-
dard deviation of evaluations with random distribution shift
in Sec. 3.6, and report the results of all corruptions for the
single distribution shift evaluation in Sec. 3.7.

1. Implementation Details
1.1. TANet

Training. The pre-trained TAM-R50 models of TANet [8]
based on ResNet50 [3] for K400 and SSv2 are from the
model zoo of TANet'. We use the models that are trained
with 8 frames sampled from each video for both datasets.
We train TAM-R50 for UCF101 with weights initialized
from the model pre-trained on K400. Following [8], we
resize the shorter size of the frame to 256, and apply the
multi-scale cropping and random horizontal flipping as data
augmentation. The cropped frames are resized to 224 x224
for training. We use a batch size of 24 and train for 50
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epochs using SGD with momentum of 0.9, weight decay
of le — 4, and initial learning rate of 1le — 3. We also the
uniform sampling strategy and sample 16 frames per video.

Inference. During inference, we resize the shorter side of
the frame to 256. For efficient implementation, we take
the center crop of size 224 x224 in the spatial dimensions.
For frame sampling, we apply uniform sampling strategy to
sample one clip from each test video. The clip length is 8
for K400 and SSv2, and 16 for UCF101.

1.2. Video Swin Transformer

Training. We use the pre-trained models of the Video
Swin Transformer [7] from the model zoo of Video Swin
Transformer. The backbone is Swin-B from Swin Trans-
former [6]. For K400, we use the Swin—-B model that
is trained with weight initialization from pre-training on
ImageNet-1K [1]. For SSv2, the model is trained with
weight initialization from pre-training on K400.

For UCF101, we train Swin-B model with the weight
initialization from K400. Following [7], the model is
trained using an AdamW [5] optimizer with a cosine de-
cay learning rate scheduler. The initial learning rate is set to
3e — 5. We train with batch size of 8 for 30 epochs. A clip
of 32 frames (size 224 x224) with a temporal stride of 2 is
sampled from each video.

Inference. During inference, we take the center crop of
size 224 x224. For frame sampling, we apply uniform sam-
pling strategy to sample one clip of 16 frames from each
test video.

’https://github.com/SwinTransformer/Video-Swin-
Transformer
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2. Corruption Types

We evaluate on 12 types of corruptions in video acquisi-
tion and video processing, proposed in [10, 13] that bench-
mark the robustness of spatio-temporal models. We pre-
pare the corrupted videos for UCF101 [11], Something-
something v2 (SSv2) [2] and Kinetics 400 (K400) [4] with
implementations from these two works. We give short de-
scriptions of the 12 corruptions in the following.

Gaussian Noise could appear due to low-lighting condi-
tions or sensor limitation during video acquisition. Pepper
Noise and Salt noise simulates disturbance in image signal
with densely occurring black pixels and white pixels. Shot
noise captures the electronic noise caused by the discrete
nature of light. In the implementation, it is approximated
with a Poisson distribution. Zoom Blur occurs when the
camera moves towards an object rapidly. Impulse noise sim-
ulates corruptions caused by the defect of camera sensor.
Defocus Blur happens when the camera is out of focus. Mo-
tion Blur is caused by destabilizing motion of camera. Jpeg
is a lossy image compression format which introduces com-
pression artifacts. Contrast corruption is common in video
acquisition due to changing contradiction in luminance and
color of the scene that is captured. Rain corruption sim-
ulates a rainy weather condition during video acquisition.
H265 ABR Compression corruption simulates compression
artifacts when video compression is performed using the
popular H.265 codec with an average bit rate.

We visualize some samples of action videos with corrup-
tions from UCF101 in Fig. 5.

3. Additional Results
3.1. Computational Efficiency

We report Memory (MB), latency (s) and performance of
TANet on UCF101 (Nvidia A6000 + AMD EPYC 7413) in
Tab. 8. ViTTA offers an excellent performance/computation
tradeoff.

3.2. Evaluation on Time-Correlated Data

In Tab. 9, we run experiments in adaptation to sequences
of videos in the order given in the original validation lists,
where videos of the same class are listed together. This
makes them highly correlated. On UCF, even clips of the
same scene/video are listed together. ViTTA still outper-
forms all baselines by a significant margin.

3.3. Adapting To Only A Part of Test Videos

During online adaptation, we estimate the test set statis-
tics by continuous exponential moving average of statistics
computed on a stream of test videos, and use these esti-
mated statistics for alignment. Here we study the perfor-
mance of our ViTTA when adapting to only the first portion
of all test videos in the sequence.

method batch views block mem. latency acc

ViTTA 1 2 34 6500 0.159  78.20
ViTTA 1 2 4 6236 0.146  77.83
ViTTA 1 1 34 4601 0.110  75.57
ViTTA 1 1 4 4469 0.098  75.43
TENT 8 - - 16482 0456  72.92
NORM 8 - - 3410 0262 6577
SHOT 8 - - 16483  0.533 6554
DUA 1 - - 4785 0.830 55.34
T3A 8 - - 3410 0.151  54.17
T3A 1 - - 2702 0.042  54.17
NORM 1 - - 2702 0.056  51.59
TENT 1 - - 4339 0.081  51.58
SHOT 1 - - 4339 0.089  51.20
Table 8. Computational efficiency.
model batch TANet Swin
dataset UCF SSv2 K400 UCF SSv2 K400
source - 51.35 2431 37.16 7848 42.18 47.17
NORM 1 17.14 377 8.72 - - -
DUA 1 2483 645 1323 - - -
TENT 1 17.14 379 877 7935 3322 45.64
SHOT 1 1730 371 579 6896 20.58 31.04
T3A 1 53.19 24.14 37.72 80.18 41.64 48.20
ViTTA 1 71.40 3145 45.04 83.48 4298 4897
NORM 8 52.87 9.83 2752 - - -
TENT 8 5391 10.24 2743 81.11 42.81 47.85
SHOT 8 5290 9.85 2627 77.83 39.52 46.05
T3A 8 5347 24.17 37.75 8031 41.69 48.22
ViTTA 8 74.19 3331 46.70 83.92 4825 5397

Table 9. Mean Top-1 Classification Accuracy (%) over all corrup-
tion types on UCF101, SSv2 and K400 datasets. Adaptation on
time correlated videos.

We denote the number of videos in the test set as Np
and the percentage of videos that we adapt to as p - 100%.
The sequence of test videos is X1, ..., X;, ..., XN, Where 7 is
the video index. We perform online adaptation only on the
first p - 100% of test videos in the sequence. Consequently,
Ngdapt = p - N7 denotes the absolute number of videos
used for adaptation.

Specifically, for videos with index ¢ < Nggapt, We
test right after adapting to them. For videos with index
1 > Ngdapt, We test directly without any further adapta-
tion. We vary p from 0% (Source-Only, Nqgap: = 0) to
100% (full adaptation, Nqgapt = N7), and report the per-
formance of TANet and Video Swin Transformer on three
datasets in Fig. 4.

We notice that on all datasets, when Nggqp: is be-
low 1000, the adaptation performance improves fast with



Train Statistics

Test Set Source-Only
UCF101 SSv2 K400
UCF101 51.35 7820  65.64 74.53
SSv2 2431 30.34 37.97 2941
K400 37.16 46.94 38.46  48.69

Table 10. Mean Top-1 Classification Accuracy (%) over all cor-
ruptions of adaptation to a test set with train statistics from differ-
ent datasets. We perform adaptation on TANet in combination of
different train and test sets across UCF101, SSv2 and K400.

Nadapt increasing. After Ngyqqpe reaches 1000, increas-
ing Nggap: leads to stable and saturated adaptation perfor-
mance. Adapting only to the first 1000 videos leads to per-
formance drop of less than 3% in comparison to the full
adaptation case. Note that Ny4qp; = 1000 corresponds to p
of 26.4% on the small UCF101 and only 4% ~ 5% on the
large-scale SSv2 and K400. This indicates the adaptation
efficiency of our ViTTA.

3.4. Train Statistics From A Different Dataset

For feature distribution alignment, our ViTTA requires
feature means and variances computed on the training data.
When training data is no longer available, these statistics
could be computed on other data with similar distribution.
We compare the performance of adaptation to a test set us-
ing train statistics from different datasets in Table 10. In-
tuitively, using the training statistics from the same dataset
leads to the best adaptation performance. Adaptation with
train statistics on clean data leads to performance boost
upon Source-Only, even if the train statistics are from a
different dataset. As UCF101 and K400 are both generic
action datasets in user video style and have similar statis-
tics, using the train statistics from one to adapt to the test
set of the other leads to slight performance drop. SSv2
is a egocentric motion-based dataset and has significantly
different distribution than UCF101 and K400. Adaptation
across SSv2 and UCF101 or K400 leads to less satisfying
performance improvement.

3.5. Momentum of Moving Average

We approximate the test set statistics by exponential
moving averages of statistics computed on consecutive test
videos. Recall Egs. (4) and (5) of the main manuscript:

' (0) = a - p(xi0) + (1—a) - "=1(0), (1)

2 0) = a-of(xi0) + (1-a) -2 0). @

Here we have the hyperparameter o and, consequently,
1 — « is the momentum (erratum for line 408 in the main
paper: « is a hyperparameter, not the momentum). As we
evaluate with the small batch size of 1, a large momentum
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Figure 4. Mean Top-1 Classification Accuracy (%) over all cor-
ruptions of adaptation to only the first Nqgep: test videos (p%) in
the sequence. For videos with index ¢ < Nggapt, we test right after
adapting to it. For videos with index ¢ > Naqapt, We test directly
without any further adaptation. We vary p from 0% (Source-Only,
Nadgapt = 0) to 100% (full adaptation, Ngdap: = NT), and report
the performance of TANet and Video Swin Transformer on three
datasets in (a) UCF101 (b) SSv2 and (c) K400.

will result in a steady update of statistics. We set « to 0.1,
which corresponds to a common choice of large momentum
of 0.9. We study other choices of the momentum value and
report the performance in Table 11.

When the momentum is too large, there is a slow con-
vergence of statistics. The moving average is dominated
by statistics of features in the past, which are outdated as
the model evolves [12]. As shown in Table 11, this slow



Momentum 0.99 0.95 0.9 0.85 0.8

11—«

UCF101 5694 6470 7820 77.53 76.80
SSv2 3481 37.53 3797 3753 36.13
K400 45.68 48.15 48.69 4747 46.13

Table 11. Mean Top-1 Classification Accuracy (%) over all cor-
ruptions with different momentum values (1 — «) for moving av-
erage. We report adaptation performance of TANet on three action
datasets.

convergence has a big impact on a small video dataset like
UCF101 (3783 validation videos), resulting in a drastic per-
formance drop. In the meanwhile, on large video datasets
like SSv2 (24K validation videos) and K400 (20K valida-
tion videos), the performance drop due to slow convergence
is less severe. When the momentum is too small, the esti-
mated statistics are dominated by the recent samples and do
not represent the whole population, leading to performance
degradation.

3.6. Evaluation with Random Distribution Shift

In Sec.4.3.2 in the main paper, we evaluated in the sce-
nario where we assume that each video received has a ran-
dom type of distribution shift. For each of the videos in a
sequence, we randomly selected one of the 13 distribution
shifts (12 corruption types, plus the case of no corruption).
We ran the experiments 3 times while shuffling the order of
the videos. In addition to the average results (reported in
Table 3 in the main paper), here we also report the standard
deviation in Table 12. Shuffling the video and corruption or-
der leads to only minor variation in the performance. Con-
sidering the standard deviation, our ViTTA still constantly
outperforms baseline methods in all settings.

3.7. Evaluation with Single Distribution Shift: Re-
sults of All Corruptions

In Table 1 of the main paper, for evaluation with sin-
gle distribution shift, we report the average performance on
all corruption types. Here we report the detailed results of
all the 12 corruption types for TANet (Table 13) and Video
Swin Transformer (Table 14) on the three datasets.
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TANet UCF101

corruptions gauss  pepper  salt shot ~ zoom impulse defocus motion jpeg  contrast rain  h265.abr avg

Source-Only 1792 23.66 7.85 7248 76.04 17.16 3751 5451 8340 62.68 8144 8158 51.35
NORM 4523 4243 2791 8625 8443 4631 5432 64.19 89.19 7526 9043 8327 65.77
DUA 36.61 3397 2239 8025 77.13 3672 44.89 5567 8512 30.58 82.66 78.14 5534
TENT 58.34 5334 3577 89.61 87.68 59.08 6492 7559 90.99 8253 92.12 85.09 72.92
SHOT 46.10 4333 2950 8551 8295 4753 5377 6337 88.69 7330 89.82 82.66 6554
T3A 19.35 2657 883 77.19 7938 18.64 40.68 58.61 86.12 6722 840 8345 54.17
ViTTA 71.37 6455 4584 9144 8768 7190 70.76 80.32 91.70 86.78 93.07 84.56 78.33

TANet SSv2

corruptions gauss  pepper  salt shot  zoom impulse defocus motion jpeg  contrast rain  h265.abr avg

Source-Only 14.29 1636  7.83 3473 4572 1439 27.83 2692 2521 2324 41.10 14.07 2431
NORM 1599 1695 1287 40.14 4530 17.06 3453 3247 4177 23.05 4218 15.89 28.18
DUA 7.45 8.95 6.45 240 2992 8.0 2071 1948 27.62  6.38 250 1048 1620
TENT 20.52 20.74 1545 4401 47.11 2134 38.10 35.87 4526 2742 4570 17.36 31.57
SHOT 17.67 18.16 13.85 3749 4325 17.85 3259 31.71 3937 2228 390 1641 2747
T3A 1523 1649 7.69 33890 4426 1548 27.69 27.17 29.08 2334 39.71 1337 24.45
ViTTA 34.69 26.69 16.15 48.58 49.26 3554 44.05 4093 4837 42.05 5095 19.57 38.07

TANet K400

corruptions gauss  pepper  salt shot  zoom impulse defocus motion jpeg  contrast rain  h265.abr avg

Source-Only  28.52 26.14 1597 57.89 39.66 2951 47.01 5279 60.60 2569 4823 1391 37.16
NORM 3255  30.09 21.67 5822 4344 3325 4399 5074 6028 28.19 57.14 1229 3932
DUA 2426 2225 1468 50.74 3510 25.04 38.15 4341 5329 1832 48.04 931 31.88
TENT 34.16 31.54 22.64 6029 46.03 34.88 4554 5250 61.87 32.50 59.21 1244 41.13
SHOT 3224 2991 21.76 5572 4026 3295 4277 4793 5644 2359 5105 1455 3743
T3A 29.38  27.19 1624 58.02 40.43 3033 46.50 53.05 60.39 2650 49.16 1393 37.59
ViTTA 4795 4390 3473 64.07 50.08 4923 52.80 57.69 63.89 46.77 61.88 1424 48.94

Table 13. Top-1 Classification Accuracy (%) for all corruptions for TANet on three datasets. DUA is evaluated with batch size of 1,
following the setting in the original work [9]. All the other methods are evaluated with batch size of 8. Highest accuracy is shown in bold,
while second best is underlined.
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Swin UCF101

corruptions gauss  pepper  salt shot  zoom impulse defocus motion jpeg  contrast rain  h265.abr avg
Source-Only  73.01 69.57 5332 90.38 8266 7383 7819 79.21 8403 81.58 90.69 8533 7848
TENT 77.66 7547 6090 91.75 8596 7875 81.29 82.86 88.13 8581 92.20 8742 8235
SHOT 7298 6939 5321 9035 8258 7380 78.17 79.19 8403 81.42 90.64 8533 7842
T3A 75.89 7256 5734 9122 8387 76.79 80.02 81.28 86.52 84.17 9159 86.89 80.68
ViTTA 81.60 81.52 7090 92.65 86.07 8247 7941 84,55 9040 86.89 9321 87.23 84.74
Swin SSv2
corruptions gauss  pepper  salt shot  zoom impulse defocus motion jpeg  contrast rain  h265.abr avg
Source-Only  39.79 33.22 2226 56.47 56.01 40.07 49.74 4336 51.08 4581 4896 19.41 42.18
TENT 3583 36.61 1192 5813 57.59 4052 53.15 46.58 5393 51.57 52.67 1557 42.84
SHOT 40.42 33.82 24.07 5631 5601 40.67 49.59 4379 5131 4553 4946 19.66 4255
T3A 39.54 33.16 22.06 56.02 5597 39.67 50.15 44.67 5256 45.63 49.57 1997 4241
VIiTTA 48.0 43.10 40.09 58.04 57.28 4887 5420 50.88 58.18 53.17 5994 2422 49.66
Swin K400
corruptions gauss  pepper  salt shot  zoom impulse defocus motion jpeg  contrast rain  h265.abr avg
Source-Only 4291 3552 28.64 6537 4215 4443 5756 5892 66.09 4584 57.12 2156 47.17
TENT 43.94 3559 2638 6590 4367 4576 58.60 59.65 66.64 50.04 5694 20.94 47.84
SHOT 4373 36.15 2938 66.26 43.02 4527 5842 59.86 67.0 46.08 5820 2239 4798
T3A 4355 3649 2925 6573 4393 4504 5855 59.78 6696 4743 59.17 2251 4820
ViTTA 5445 51.17 4415 6792 5199 5592 5757 6097 67.68 5447 6597 2234 54.55

Table 14. Top-1 Classification Accuracy (%) for all corruptions for Video Swin Transformer on three datasets. NORM and DUA cannot
be evaluated on transformer without batch norm layers. All the methods are evaluated with batch size of 8. Highest accuracy is shown in
bold, while second best is underlined.
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Figure 5. Samples of action videos with corruptions. Best viewed on screen.
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