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For further insights into our ViTTA, we provide imple-
mentation details of TANet and Video Swin Transformer
(Sec. 1), introduction of the corruptions used in evaluation
(Sec.2) and additional experimental results (Sec. 3).

In Sec. 3.1, we compare the computation efficiency of
ViTTA with baseline methods. In Sec. 3.2. we report adap-
tation performance on time-correlated data. In Sec. 3.3, we
report the performance of adaptation to only a part of the
test set to validation the adaptation efficiency of ViTTA.
In Sec. 3.4, we compare the performance of adaptation to
a test set using train statistics from different datasets. In
Sec. 3.5, we perform an ablation study on the choice of mo-
mentum for moving average. Furthermore, we report stan-
dard deviation of evaluations with random distribution shift
in Sec. 3.6, and report the results of all corruptions for the
single distribution shift evaluation in Sec. 3.7.

1. Implementation Details
1.1. TANet

Training. The pre-trained TAM-R50 models of TANet [8]
based on ResNet50 [3] for K400 and SSv2 are from the
model zoo of TANet1. We use the models that are trained
with 8 frames sampled from each video for both datasets.

We train TAM-R50 for UCF101 with weights initialized
from the model pre-trained on K400. Following [8], we
resize the shorter size of the frame to 256, and apply the
multi-scale cropping and random horizontal flipping as data
augmentation. The cropped frames are resized to 224×224
for training. We use a batch size of 24 and train for 50
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1https://github.com/liu-zhy/temporal-adaptive-
module

epochs using SGD with momentum of 0.9, weight decay
of 1e − 4, and initial learning rate of 1e − 3. We also the
uniform sampling strategy and sample 16 frames per video.

Inference. During inference, we resize the shorter side of
the frame to 256. For efficient implementation, we take
the center crop of size 224×224 in the spatial dimensions.
For frame sampling, we apply uniform sampling strategy to
sample one clip from each test video. The clip length is 8
for K400 and SSv2, and 16 for UCF101.

1.2. Video Swin Transformer

Training. We use the pre-trained models of the Video
Swin Transformer [7] from the model zoo of Video Swin
Transformer2. The backbone is Swin-B from Swin Trans-
former [6]. For K400, we use the Swin-B model that
is trained with weight initialization from pre-training on
ImageNet-1K [1]. For SSv2, the model is trained with
weight initialization from pre-training on K400.

For UCF101, we train Swin-B model with the weight
initialization from K400. Following [7], the model is
trained using an AdamW [5] optimizer with a cosine de-
cay learning rate scheduler. The initial learning rate is set to
3e − 5. We train with batch size of 8 for 30 epochs. A clip
of 32 frames (size 224×224) with a temporal stride of 2 is
sampled from each video.

Inference. During inference, we take the center crop of
size 224×224. For frame sampling, we apply uniform sam-
pling strategy to sample one clip of 16 frames from each
test video.

2https://github.com/SwinTransformer/Video-Swin-
Transformer
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2. Corruption Types
We evaluate on 12 types of corruptions in video acquisi-

tion and video processing, proposed in [10, 13] that bench-
mark the robustness of spatio-temporal models. We pre-
pare the corrupted videos for UCF101 [11], Something-
something v2 (SSv2) [2] and Kinetics 400 (K400) [4] with
implementations from these two works. We give short de-
scriptions of the 12 corruptions in the following.

Gaussian Noise could appear due to low-lighting condi-
tions or sensor limitation during video acquisition. Pepper
Noise and Salt noise simulates disturbance in image signal
with densely occurring black pixels and white pixels. Shot
noise captures the electronic noise caused by the discrete
nature of light. In the implementation, it is approximated
with a Poisson distribution. Zoom Blur occurs when the
camera moves towards an object rapidly. Impulse noise sim-
ulates corruptions caused by the defect of camera sensor.
Defocus Blur happens when the camera is out of focus. Mo-
tion Blur is caused by destabilizing motion of camera. Jpeg
is a lossy image compression format which introduces com-
pression artifacts. Contrast corruption is common in video
acquisition due to changing contradiction in luminance and
color of the scene that is captured. Rain corruption sim-
ulates a rainy weather condition during video acquisition.
H265 ABR Compression corruption simulates compression
artifacts when video compression is performed using the
popular H.265 codec with an average bit rate.

We visualize some samples of action videos with corrup-
tions from UCF101 in Fig. 5.

3. Additional Results
3.1. Computational Efficiency

We report Memory (MB), latency (s) and performance of
TANet on UCF101 (Nvidia A6000 + AMD EPYC 7413) in
Tab. 8. ViTTA offers an excellent performance/computation
tradeoff.

3.2. Evaluation on Time-Correlated Data

In Tab. 9, we run experiments in adaptation to sequences
of videos in the order given in the original validation lists,
where videos of the same class are listed together. This
makes them highly correlated. On UCF, even clips of the
same scene/video are listed together. ViTTA still outper-
forms all baselines by a significant margin.

3.3. Adapting To Only A Part of Test Videos

During online adaptation, we estimate the test set statis-
tics by continuous exponential moving average of statistics
computed on a stream of test videos, and use these esti-
mated statistics for alignment. Here we study the perfor-
mance of our ViTTA when adapting to only the first portion
of all test videos in the sequence.

method batch views block mem. latency acc

ViTTA 1 2 3,4 6500 0.159 78.20
ViTTA 1 2 4 6236 0.146 77.83
ViTTA 1 1 3,4 4601 0.110 75.57
ViTTA 1 1 4 4469 0.098 75.43

TENT 8 - - 16482 0.456 72.92
NORM 8 - - 3410 0.262 65.77
SHOT 8 - - 16483 0.533 65.54
DUA 1 - - 4785 0.830 55.34
T3A 8 - - 3410 0.151 54.17
T3A 1 - - 2702 0.042 54.17

NORM 1 - - 2702 0.056 51.59
TENT 1 - - 4339 0.081 51.58
SHOT 1 - - 4339 0.089 51.20

Table 8. Computational efficiency.

model
batch

TANet Swin

dataset UCF SSv2 K400 UCF SSv2 K400

source - 51.35 24.31 37.16 78.48 42.18 47.17

NORM 1 17.14 3.77 8.72 - - -
DUA 1 24.83 6.45 13.23 - - -
TENT 1 17.14 3.79 8.77 79.35 33.22 45.64
SHOT 1 17.30 3.71 5.79 68.96 20.58 31.04
T3A 1 53.19 24.14 37.72 80.18 41.64 48.20

ViTTA 1 71.40 31.45 45.04 83.48 42.98 48.97

NORM 8 52.87 9.83 27.52 - - -
TENT 8 53.91 10.24 27.43 81.11 42.81 47.85
SHOT 8 52.90 9.85 26.27 77.83 39.52 46.05
T3A 8 53.47 24.17 37.75 80.31 41.69 48.22

ViTTA 8 74.19 33.31 46.70 83.92 48.25 53.97

Table 9. Mean Top-1 Classification Accuracy (%) over all corrup-
tion types on UCF101, SSv2 and K400 datasets. Adaptation on
time correlated videos.

We denote the number of videos in the test set as NT

and the percentage of videos that we adapt to as p · 100%.
The sequence of test videos is x1, ...,xi, ...,xNT

, where i is
the video index. We perform online adaptation only on the
first p · 100% of test videos in the sequence. Consequently,
Nadapt = p · NT denotes the absolute number of videos
used for adaptation.

Specifically, for videos with index i ≤ Nadapt, we
test right after adapting to them. For videos with index
i > Nadapt, we test directly without any further adapta-
tion. We vary p from 0% (Source-Only, Nadapt = 0) to
100% (full adaptation, Nadapt = NT ), and report the per-
formance of TANet and Video Swin Transformer on three
datasets in Fig. 4.

We notice that on all datasets, when Nadapt is be-
low 1000, the adaptation performance improves fast with



Test Set Source-Only
Train Statistics

UCF101 SSv2 K400

UCF101 51.35 78.20 65.64 74.53
SSv2 24.31 30.34 37.97 29.41
K400 37.16 46.94 38.46 48.69

Table 10. Mean Top-1 Classification Accuracy (%) over all cor-
ruptions of adaptation to a test set with train statistics from differ-
ent datasets. We perform adaptation on TANet in combination of
different train and test sets across UCF101, SSv2 and K400.

Nadapt increasing. After Nadapt reaches 1000, increas-
ing Nadapt leads to stable and saturated adaptation perfor-
mance. Adapting only to the first 1000 videos leads to per-
formance drop of less than 3% in comparison to the full
adaptation case. Note that Nadapt = 1000 corresponds to p
of 26.4% on the small UCF101 and only 4% ∼ 5% on the
large-scale SSv2 and K400. This indicates the adaptation
efficiency of our ViTTA.

3.4. Train Statistics From A Different Dataset

For feature distribution alignment, our ViTTA requires
feature means and variances computed on the training data.
When training data is no longer available, these statistics
could be computed on other data with similar distribution.
We compare the performance of adaptation to a test set us-
ing train statistics from different datasets in Table 10. In-
tuitively, using the training statistics from the same dataset
leads to the best adaptation performance. Adaptation with
train statistics on clean data leads to performance boost
upon Source-Only, even if the train statistics are from a
different dataset. As UCF101 and K400 are both generic
action datasets in user video style and have similar statis-
tics, using the train statistics from one to adapt to the test
set of the other leads to slight performance drop. SSv2
is a egocentric motion-based dataset and has significantly
different distribution than UCF101 and K400. Adaptation
across SSv2 and UCF101 or K400 leads to less satisfying
performance improvement.

3.5. Momentum of Moving Average

We approximate the test set statistics by exponential
moving averages of statistics computed on consecutive test
videos. Recall Eqs. (4) and (5) of the main manuscript:

µl
(i)(θ) = α · µl(xi; θ) + (1− α) · µl

(i−1)(θ), (1)

σ2
l
(i)
(θ) = α · σ2

l (xi; θ) + (1− α) · σ2
l
(i−1)

(θ). (2)

Here we have the hyperparameter α and, consequently,
1 − α is the momentum (erratum for line 408 in the main
paper: α is a hyperparameter, not the momentum). As we
evaluate with the small batch size of 1, a large momentum
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Figure 4. Mean Top-1 Classification Accuracy (%) over all cor-
ruptions of adaptation to only the first Nadapt test videos (p%) in
the sequence. For videos with index i ≤ Nadapt, we test right after
adapting to it. For videos with index i > Nadapt, we test directly
without any further adaptation. We vary p from 0% (Source-Only,
Nadapt = 0) to 100% (full adaptation, Nadapt = NT ), and report
the performance of TANet and Video Swin Transformer on three
datasets in (a) UCF101 (b) SSv2 and (c) K400.

will result in a steady update of statistics. We set α to 0.1,
which corresponds to a common choice of large momentum
of 0.9. We study other choices of the momentum value and
report the performance in Table 11.

When the momentum is too large, there is a slow con-
vergence of statistics. The moving average is dominated
by statistics of features in the past, which are outdated as
the model evolves [12]. As shown in Table 11, this slow



Momentum
1− α

0.99 0.95 0.9 0.85 0.8

UCF101 56.94 64.70 78.20 77.53 76.80
SSv2 34.81 37.53 37.97 37.53 36.13
K400 45.68 48.15 48.69 47.47 46.13

Table 11. Mean Top-1 Classification Accuracy (%) over all cor-
ruptions with different momentum values (1 − α) for moving av-
erage. We report adaptation performance of TANet on three action
datasets.

convergence has a big impact on a small video dataset like
UCF101 (3783 validation videos), resulting in a drastic per-
formance drop. In the meanwhile, on large video datasets
like SSv2 (24K validation videos) and K400 (20K valida-
tion videos), the performance drop due to slow convergence
is less severe. When the momentum is too small, the esti-
mated statistics are dominated by the recent samples and do
not represent the whole population, leading to performance
degradation.

3.6. Evaluation with Random Distribution Shift

In Sec.4.3.2 in the main paper, we evaluated in the sce-
nario where we assume that each video received has a ran-
dom type of distribution shift. For each of the videos in a
sequence, we randomly selected one of the 13 distribution
shifts (12 corruption types, plus the case of no corruption).
We ran the experiments 3 times while shuffling the order of
the videos. In addition to the average results (reported in
Table 3 in the main paper), here we also report the standard
deviation in Table 12. Shuffling the video and corruption or-
der leads to only minor variation in the performance. Con-
sidering the standard deviation, our ViTTA still constantly
outperforms baseline methods in all settings.

3.7. Evaluation with Single Distribution Shift: Re-
sults of All Corruptions

In Table 1 of the main paper, for evaluation with sin-
gle distribution shift, we report the average performance on
all corruption types. Here we report the detailed results of
all the 12 corruption types for TANet (Table 13) and Video
Swin Transformer (Table 14) on the three datasets.
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TANet UCF101

corruptions gauss pepper salt shot zoom impulse defocus motion jpeg contrast rain h265.abr avg

Source-Only 17.92 23.66 7.85 72.48 76.04 17.16 37.51 54.51 83.40 62.68 81.44 81.58 51.35

NORM 45.23 42.43 27.91 86.25 84.43 46.31 54.32 64.19 89.19 75.26 90.43 83.27 65.77
DUA 36.61 33.97 22.39 80.25 77.13 36.72 44.89 55.67 85.12 30.58 82.66 78.14 55.34
TENT 58.34 53.34 35.77 89.61 87.68 59.08 64.92 75.59 90.99 82.53 92.12 85.09 72.92
SHOT 46.10 43.33 29.50 85.51 82.95 47.53 53.77 63.37 88.69 73.30 89.82 82.66 65.54
T3A 19.35 26.57 8.83 77.19 79.38 18.64 40.68 58.61 86.12 67.22 84.0 83.45 54.17

ViTTA 71.37 64.55 45.84 91.44 87.68 71.90 70.76 80.32 91.70 86.78 93.07 84.56 78.33

TANet SSv2

corruptions gauss pepper salt shot zoom impulse defocus motion jpeg contrast rain h265.abr avg

Source-Only 14.29 16.36 7.83 34.73 45.72 14.39 27.83 26.92 25.21 23.24 41.10 14.07 24.31

NORM 15.99 16.95 12.87 40.14 45.30 17.06 34.53 32.47 41.77 23.05 42.18 15.89 28.18
DUA 7.45 8.95 6.45 24.0 29.92 8.0 20.71 19.48 27.62 6.38 25.0 10.48 16.20
TENT 20.52 20.74 15.45 44.01 47.11 21.34 38.10 35.87 45.26 27.42 45.70 17.36 31.57
SHOT 17.67 18.16 13.85 37.49 43.25 17.85 32.59 31.71 39.37 22.28 39.0 16.41 27.47
T3A 15.23 16.49 7.69 33.89 44.26 15.48 27.69 27.17 29.08 23.34 39.71 13.37 24.45

ViTTA 34.69 26.69 16.15 48.58 49.26 35.54 44.05 40.93 48.37 42.05 50.95 19.57 38.07

TANet K400

corruptions gauss pepper salt shot zoom impulse defocus motion jpeg contrast rain h265.abr avg

Source-Only 28.52 26.14 15.97 57.89 39.66 29.51 47.01 52.79 60.60 25.69 48.23 13.91 37.16

NORM 32.55 30.09 21.67 58.22 43.44 33.25 43.99 50.74 60.28 28.19 57.14 12.29 39.32
DUA 24.26 22.25 14.68 50.74 35.10 25.04 38.15 43.41 53.29 18.32 48.04 9.31 31.88
TENT 34.16 31.54 22.64 60.29 46.03 34.88 45.54 52.50 61.87 32.50 59.21 12.44 41.13
SHOT 32.24 29.91 21.76 55.72 40.26 32.95 42.77 47.93 56.44 23.59 51.05 14.55 37.43
T3A 29.38 27.19 16.24 58.02 40.43 30.33 46.50 53.05 60.39 26.50 49.16 13.93 37.59

ViTTA 47.95 43.90 34.73 64.07 50.08 49.23 52.80 57.69 63.89 46.77 61.88 14.24 48.94

Table 13. Top-1 Classification Accuracy (%) for all corruptions for TANet on three datasets. DUA is evaluated with batch size of 1,
following the setting in the original work [9]. All the other methods are evaluated with batch size of 8. Highest accuracy is shown in bold,
while second best is underlined.
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Swin UCF101

corruptions gauss pepper salt shot zoom impulse defocus motion jpeg contrast rain h265.abr avg

Source-Only 73.01 69.57 53.32 90.38 82.66 73.83 78.19 79.21 84.03 81.58 90.69 85.33 78.48

TENT 77.66 75.47 60.90 91.75 85.96 78.75 81.29 82.86 88.13 85.81 92.20 87.42 82.35
SHOT 72.98 69.39 53.21 90.35 82.58 73.80 78.17 79.19 84.03 81.42 90.64 85.33 78.42
T3A 75.89 72.56 57.34 91.22 83.87 76.79 80.02 81.28 86.52 84.17 91.59 86.89 80.68

ViTTA 81.60 81.52 70.90 92.65 86.07 82.47 79.41 84.55 90.40 86.89 93.21 87.23 84.74

Swin SSv2

corruptions gauss pepper salt shot zoom impulse defocus motion jpeg contrast rain h265.abr avg

Source-Only 39.79 33.22 22.26 56.47 56.01 40.07 49.74 43.36 51.08 45.81 48.96 19.41 42.18

TENT 35.83 36.61 11.92 58.13 57.59 40.52 53.15 46.58 53.93 51.57 52.67 15.57 42.84
SHOT 40.42 33.82 24.07 56.31 56.01 40.67 49.59 43.79 51.31 45.53 49.46 19.66 42.55
T3A 39.54 33.16 22.06 56.02 55.97 39.67 50.15 44.67 52.56 45.63 49.57 19.97 42.41

ViTTA 48.0 43.10 40.09 58.04 57.28 48.87 54.20 50.88 58.18 53.17 59.94 24.22 49.66

Swin K400

corruptions gauss pepper salt shot zoom impulse defocus motion jpeg contrast rain h265.abr avg

Source-Only 42.91 35.52 28.64 65.37 42.15 44.43 57.56 58.92 66.09 45.84 57.12 21.56 47.17

TENT 43.94 35.59 26.38 65.90 43.67 45.76 58.60 59.65 66.64 50.04 56.94 20.94 47.84
SHOT 43.73 36.15 29.38 66.26 43.02 45.27 58.42 59.86 67.0 46.08 58.20 22.39 47.98
T3A 43.55 36.49 29.25 65.73 43.93 45.04 58.55 59.78 66.96 47.43 59.17 22.51 48.20

ViTTA 54.45 51.17 44.15 67.92 51.99 55.92 57.57 60.97 67.68 54.47 65.97 22.34 54.55

Table 14. Top-1 Classification Accuracy (%) for all corruptions for Video Swin Transformer on three datasets. NORM and DUA cannot
be evaluated on transformer without batch norm layers. All the methods are evaluated with batch size of 8. Highest accuracy is shown in
bold, while second best is underlined.
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Figure 5. Samples of action videos with corruptions. Best viewed on screen.
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