
Supplementary Material for
Vision Transformers are Parameter-Efficient Audio-Visual Learners

Our supplementary material consists of:

1. Implementation Details.

2. Additional Quantitative Results.

1. Implementation Details
For all of our experiments, we extract the visual frames

at 1 fps. As our best performing model, we adopt a pre-
trained Swin-V2-Large [8] with a 192 × 192 spatial res-
olution with all parameters frozen. For the audio-visual
event localization task, we implement our LAVISH adapter
with 2 latent tokens and the downsampling factor of 8 in
the 2D group convolutional adapter layers, where the num-
ber of group convolutions is set to 2. Our group convolu-
tion adapter layers use only 0.5x parameters as the standard
fully connected ones. For the audio-visual segmentation
and audio-visual question-answering tasks on AVSBench-
S4 and MUSIC-AVQA, we use 16 latent tokens and set the
downsampling rate and the number of group convolutions
to 4 and 2, respectively. For all of our experiments, we use
Adam [5] optimizer to train our model. We set the learning
rate of LAVISH adapter to 5e−6 and 4e−6 for the final pre-
diction layer for audio-visual event localization, 1e − 4 for
audio-visual segmentation, and 8e− 5 for LAVISH adapter
and 3e−6 for the grounding modules and the final predic-
tion layer in audio-visual question answering. For audio
preprocessing, we compute the audio spectrogram by Py-
Torch [10] kaldi fbank with 192 triangular mel-frequency
bins and frameshift in 5.2 milliseconds. Then, we inflate
the input channel of the audio spectrogram from 1 to 3 to
match the dimensions of a linear patch projection layer in
SwinV2.

Task Batch Size Num. Latent Tokens Downsampling Factor

AVE 2 2 8
AVS 4 16 4
AVQA 1 16 4

2. Additional Quantitative Results
Comparing ViT and ResNet-152 Backbones. To in-

vestigate whether a visual transformer backbone is truly

Table 1: Comparison with Visual-only Variants. We
compare our audio-visual approach with visual-only vari-
ants on three audio-visual understanding tasks: audio-visual
event localization (AVE), audio-visual segmentation (AVS),
and audio-visual question answering (AVQA). As evalua-
tion metrics, we use top-1 accuracy, mean intersection over
union (mIoU), and top-1 accuracy for all three tasks respec-
tively. Our results indicate that our model benefits signifi-
cantly from jointly modeling audio and visual cues.

Task
Input

Modality
Accuracy ↑

AVE [13]
Vision 75.3

Audio+Vision 81.1

AVS [16]
Vision 72.1

Audio+Vision 80.1

AVQA [7]
Vision 63.2

Audio+Vision 77.1

necessary for adapting a frozen visual model to an audio-
visual task, we also conduct experiments with a ResNet-152
backbone [3]. We report that compared to a ViT-B [2] (86M
params), using a ResNet-152 backbone (60M params) leads
to a significant 18% drop in accuracy. To make the com-
parison fairer in terms of a model’s capacity, we also re-
port the results using ViT-tiny (6M params) and ViT-small
(23M params) architectures, which both have a smaller ca-
pacity than ResNet-152. We observe that in both of these
cases, the ViT variants outperform ResNet-152 (by 5.4 %
and 13.9% respectively. These results demonstrate that the
lack of inductive biases in visual transformer models en-
ables more effective transfer between inputs across different
modalities.

Comparison with Visual-Only Baselines. To verify the
importance of jointly considering audio-visual information
in all three of our considered benchmarks/tasks (i.e., audio-
visual event localization (AVE), audio-visual segmentation
(AVS), and audio-visual question-answering (AVQA)), we
compare our audio-visual approach with the visual-only
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Table 2: Audio-visual Action Recognition. We evaluate our LAVISH approach on the UCF101 [12] dataset for audio-visual
action recognition task. Compared to prior audio-visual approaches, LAVISH achieves the best action recognition accuracy
while using the smallest number of trainable parameters.

Method
Visual

Encoder
Audio

Encoder
Pretrain

Data
Trainable

Params (M) ↓
Samples

per Sec. ↑ Acc ↑

XDC [1] R(2+1)D ResNet-18 Kinetics-400 (A+V) 45 - 86.8
AVTS [6] R(2+1)D ResNet-18 Kinetics-400 (A+V) 45 - 86.2
GDT [11] R(2+1)D ResNet-9 Kinetics-400 (A+V) 39.2 - 89.3
MBT [9] ViT-B AST-B Kinetics-400 (V) + AudioSet (A) 172 4.42 91.8

LAVISH ViT-B❄ (shared) Kinetics-400 (V) 7.4 6.36 92.6

Table 3: Is LAVISH Complementary to Pretrained Audio Encoders? We study whether our LAVISH approach can further
benefit from audio features obtained using a VGGIsh [4] audio encoder pretrained on the large-scale AudioSet dataset. To
do this, we concatenate the pretrained audio features with audio-visual features from our LAVISH approach. These results
indicate that combining audio representations from these two sources leads to a slight boost in performance.

Method Encoders
Visual

Pretrain
Audio

Pretrain
Acc

LAVISH Swin-V2-L ❄ ImageNet ✘ 81.1
LAVISH Swin-V2-L ❄ + VGGish ❄ ImageNet AudioSet 82.4

variants that only consider visual information without pro-
cessing any audio cues. We present these results In Ta-
ble 1, and report the audio-visual variant of our approach,
which jointly considers audio and visual cues, consistently
outperforms the visual-only baselines by 5.8% top-1 acc.,
8% mIoU, and 13.9% top-1 acc. for the AVE, AVS, and
AVQA tasks respectively. These results indicate that our
model benefits significantly from the joint modeling of au-
dio and visual cues and also that visual information alone
is not enough for achieving state-of-the-art results on these
particular audio-visual tasks.

Action Recognition on UCF101. In Table 2, we also
test our model on UCF101 action recognition. We imple-
ment LAVISH using VideoMAE codebase [14] pretrained
on videos only. Compared to XDC, AVTS, and GDT,
all of which used large-scale audio-visual pretraining on
Kinetics-400, LAVISH achieves better results (92.6% vs
86.8%, 86.8%, and 89.3%) with fewer trainable parameters
(7.4M vs 45M and 39.2M) and without any audio-visual
pretraining. Our method also outperforms MBT, which uses
ViT and AST pretrained on Kinetics and AudioSet, respec-
tively.

Is LAVISH Complementary to Pretrained Audio En-
coders? In Table 3, we also study whether our LAVISH
approach can further benefit from audio features obtained
using an external VGGish [4] audio encoder pretrained on
the large-scale AudioSet dataset. To do this, we concate-

Table 4: Throughput Comparison. We compare the
throughput of our LAVISH with the state-of-the-art CMBS
approach. The throughput is measured using the number of
samples per second. In addition to achieving higher accu-
racy, our method is almost 2× faster than CMBS.

Method
Visual

Encoder
Audio

Encoder
Samples

per Sec. ↑ Acc ↑

CMBS [15] Swin-L❄ VGGish❄ 0.72 80.4
LAVISH Swin-L❄ (shared) 1.40 81.1

nate the features from the VGGish [4] audio encoder with
the audio-visual features from our LAVISH approach and
train a linear layer to predict the event category for the
audio-visual event localization task. Based on the results
in Table 3, we observe that using an external VGGish audio
classifier leads to a 1.3% boost in performance. This indi-
cates that our LAVISH adapters and VGGish encode com-
plementary audio information, and combining audio repre-
sentations from these two sources is beneficial.

Throughput Comparisons. In Table 4, we also compare
LAVISH to CMBS [79] on the same A6000 GPU. Despite
using Swin-L for audio (compared to VGGish), LAVISH
has better throughput (1.40 vs. 0.72 samples/sec). This is
because, unlike LAVISH, CMBS uses additional temporal
modules.
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Figure 1: Number of Latent Tokens. We investigate the
accuracy (in blue) and the computational cost (in GFLOPs)
(in red) as a function of the number of latent tokens. LAV-
ISH achieves the best accuracy with two latent tokens. Such
a small number of latent tokens enables highly efficient im-
plementation of our approach.

Number of Latent Tokens. Additionally, in Figure 1, we
study the performance and computational cost as a func-
tion of the number of latent tokens. These results indicate
that our model achieves the best accuracy with only two to-
kens (81.1%). Furthermore, we observe that using more
latent tokens linearly increases the computational cost but
does not yield better results. We conjecture that this hap-
pens because the AVE dataset is relatively small, and the
model might overfit with more latent tokens. This hypoth-
esis is supported by our results on the larger audio-visual
segmentation and audio-visual question answering datasets,
where the optimal number of latent tokens is 16. We note
that a similar trend has also been reported in prior work [9].
Thus, these results suggest that LAVISH obtains a favor-
able trade-off between performance and efficiency as cross-
modal fusion operation can be implemented very efficiently
when few (i.e., 2) latent tokens are used.
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