
Supplementary Material for “3D Line Mapping Revisited”

Shaohui Liu1 Yifan Yu1 Rémi Pautrat1 Marc Pollefeys1,2 Viktor Larsson3

1Department of Computer Science, ETH Zurich 2Microsoft 3Lund University

Full Acknowledgements. We sincerely thank the reviewers
for their constructive feedback. We are grateful to Philipp
Lindenberger, Paul-Edouard Sarlin, Johannes Schönberger
for their open-source projects, Iago Suárez, Hengkai Guo,
Daniel Barath, Siyan Dong, Martin Oswald, Jing Ren, Iro
Armeni for helpful discussions, Marcel Geppert, Daniel Thul,
Peizhuo Li for technical support on Blender. Special thanks
to Mihai Dusmanu and Wang Zhao for proof-reading. Viktor
Larsson received funding by the strategic research project
ELLIIT.

Appendix
This document provides a list of supplementary materials

that accompany the main paper. The content is organized as
follows:

• In Section A, we introduce the notation, parameteriza-
tion, and transformations of Plücker coordinates that
are used throughout the system, in particular at joint
optimization.

• In Section B, we provide detailed derivations for differ-
ent types of triangulations discussed in the main paper.

• In Section C, we provide details on constructing the
association graph among lines and points / vanishing
points, and further introduce some examples of its ex-
tensions to higher-level applications.

• In Section D, we provide details on computing the co-
variance used in the main paper for endpoint triangu-
lation and algebraic line triangulation, and also give
details on the setup of the corresponding synthetic tests.

• In Section E, we extend the discussion in the main
paper to show how our system can be easily extended
to map lines with available depth maps, and further
present relevant experimental results on mapping and
localization.

• In Section F, more implementation details are provided
on datasets, hyperparameters, detailed distance mea-
surements and the two baseline methods [20, 52] in the
experiments.

• In Section G, we present more experimental results and
additional analysis on our 3D line mapping system.

• In Section H, we provide details on our proposed line-
assisted visual localization system, along with more
results and comparisons against the baseline method
[16], including point-line localization results on InLoc
dataset [49].

• In Section I, we present more results on refining point-
based structure-from-motion with our proposed line
mapping system.

• In Section J, we show preliminary results on how to
adapt the acquired 3D line maps into the PatchMatch
Stereo pipeline [43] to improve the completeness of
dense reconstruction.

• In Section K, we present how to extend featuremetric
optimization over the acquired line tracks to improve
the pixelwise alignment with deep features.

• Finally, in Section L, we expand the conclusions in the
main paper and discuss more on the limitations and
future work.

A. Background: Plücker Coordinate

Here we revisit how to represent an infinite line with its
Plücker coordinate [17]. We first present the definition and
its 4 DoF minimal parameterization [5]. Then, we show how
to apply geometric operations on top of it.

A.1. Definition

A 3D line segment is compactly encoded with its two 3D
endpoints ps and pe, which exhibit six degrees of freedom.
Its corresponding infinite 3D line, however, has only 4 de-
grees of freedom, as both points can be moving along the
line direction. Thus, representing an infinite 3D line with
two 3D points is not a compact representation in the sense
that two coordinates can be both feasible and correspond to
the same infinite 3D line. The Plücker coordinate [5, 18, 30]
(d,m) is a compact representation for an infinite 3D line,

1



where d is the normalized direction of the 3D line, and m is
the moment that is invariant to any point p along the line

d =
pe − ps

∥pe − ps∥
(1)

m = p× d = ps × d = pe × d. (2)

The property in (2) is due to the fact that (p−ps)×d = 0,
where p is any point along the line. The coordinate is conve-
nient in the sense that we can directly perform transforma-
tions and projections efficiently on top of it, which will be
presented in the following subsections.

A.2. Minimal Parameterization

We first discuss here how to minimally parameterize a
Plücker coordinate (d,m) in a non-linear optimization, e.g.
our joint optimization scheme. The minimal parameteriza-
tion was initially discussed in [5] as the orthonormal rep-
resentation. A Plücker coordinate can be minimally repre-
sented with:

(U ,W ) ∈ SO(3)× SO(2). (3)

This results in the minimal 3 + 1 = 4 degrees of freedom
for the infinite 3D line. Specifically, since d is orthogonal to
m, we can represent the coordinate (d,m) with:

U = (d
m

∥m∥
d×m

∥d×m∥
) ∈ SO(3), (4)

W =

(
w1 w2

−w2 w1

)
∈ SO(2), (5)

w1 =
1√

1 + ∥m∥2
, w2 =

∥m∥√
1 + ∥m∥2

. (6)

Denote U as U = (u1 u2 u3), we can easily recover
the original Plücker coordinate (d,m) with the minimal
parameterization by:

d = u1, m =
w2

w1
u2 (7)

At optimization, we can parameterize U ∈ SO(3) with a
quaternion, and V ∈ SO(2) with a 2-dimensional homoge-
neous parameterization using Ceres [3].

A.3. Perspective Projection

The Plücker coordinate (d,m) can be written in matrix
form. The 4× 4 Plücker matrix L is formulated as:

L =

(
[m]× d
−d 0

)
. (8)

We here directly provide the clean formulation from [17]
for projecting an infinite 3D line with Plücker matrix L
perspectively with a 3× 4 projection matrix P :

[l]× = PLP T , (9)

where l is the 3-dimensional homogeneous coordinate for
the resulting 2D infinite line, where on the 2D image we
have lT [x, y, 1] = 0.

A.4. Point-to-Line Projection

Here we discuss how to project a 3D point p onto the
infinite 3D line represented with Plücker coordinate (d,m).
Specifically, we can compute the moment mp of the line
with respect to the 3D point p (rather than the origin):

mp = m+ d× p. (10)

Then, the projection of the 3D point p⊥ on the infinite
3D line can be computed as:

p⊥ = p+ d×mp = p+ d× (m+ d× p). (11)

We can use this property to efficiently compute the pro-
jection of the 3D point without computing squared distances,
which gives us robustness to numerical issues at joint opti-
mization with soft point-line associations.

A.5. Line-to-Line Projection

The line-to-line projection aims to find the point on the
line (line 1) with Plücker coordinate (d1,m1) that is clos-
est to the projected line (line 2) with Plücker coordinate
(d2,m2). This operation is particularly useful in our system
at the following steps:

• M1. Triangulation with multiple points. We need
to project the infinite 3D line fitted from multiple 3D
points onto the camera rays of the two endpoints in the
reference image.

• Endpoint aggregation at joint optimization. We aim
to get a rough estimate of the 3D endpoints on the
optimized infinite 3D line, without 3D line proposals.
Here we can project the camera rays from the endpoints
of each 2D support onto the infinite 3D line.

• Cheirality test for point-line localization. We need
to test, for each 2D-3D line correspondence, if the 3D
line segment has positive depth at the range of the un-
projection of its 2D support. Here we can project the
camera rays from the endpoints of the 2D supporting
line segment onto the infinite 3D line of the 3D line
segment to get the ranges where the cheirality test is
applied.

Specifically, take p2→1⊥ as the projection of infinite line
2 with (d2,m2) onto infinite line 1 with (d1,m1), the point
can be computed with Plücker coordinate [17] as follows:



p2→1⊥ =
−m1 × (d2 × (d1 × d2)) + (mT

2 (d1 × d2))d1

∥d1 × d2∥2
(12)

The other way can be computed similarly by substitution
of variables.

B. Detailed Derivations for Different Types of
Triangulations

As discussed in the paper, we propose four types of dif-
ferent triangulation methods to generate the 3D proposals
for each 2D line segment, including the straightforward al-
gebraic line triangulation, plus three advanced triangulation
methods utilizing commonly associated points and a van-
ishing point direction. To ensure completeness as well as
support the later discussion in Section D, here we will pro-
vide detailed derivations for each of the four triangulation
methods.

B.1. Algebraic Line Triangulation

We start with the conventional line triangulation with
back-projected planes. Because we aim to get the 3D end-
points of the triangulated line segment rather than the infinite
line, the algebraic line triangulation is geometrically two ray-
plane intersection problems between the camera rays from
the endpoints xr

1, xr
2 of the reference line segment and the

back-projected plane from the matched line segment spanned
by the camera rays of xm

1 , xm
2 on the target image. Here xr

1,
xr
2, xm

1 , xm
2 are all in homogeneous coordinates normalized

by the camera intrinsics.
As in the main paper, assume without loss of generality

that the world coordinate system aligns with the reference
view, while the camera pose of the matched view is (R, t).
Then the intersection point Xi = λix

r
i (i = 1, 2) can be

written in the linear combination of the two camera rays of
the endpoints from the matched segments:

Xi = λix
r
i = −RT t+ β1R

Txm
1 + β2R

Txm
2 . (13)

This results in a 3×3 linear system to solve for [λi, β1, β2]
for i = 1, 2, which will be used in the derivation of the
covariance in Section D. By multiplying R and adding t in
both sides we have:

R(λix
r
i ) + t = β1x

m
1 + β2x

m
2 . (14)

Then, by multiplying (xm
1 × xm

2 )T in both sides:

(xm
1 × xm

2 )T (R(λix
r
i ) + t) = 0, (15)

which is similar to Eq. (2) in the main paper. Here the
equation can be taken as the point Xi = λixi satisfying the
equation of the back-projected plane.

B.2. M1. Triangulation with Multiple Points

This triangulation applies to the case when multiple (≥ 2)
common 3D points are available between the reference line
segment and the matched one by traversing the 2D point-
line association graphs. Here, we can fit an infinite 3D
line by computing the mean and principle direction over
all the points, and then project the infinite 3D line onto the
two camera rays for xr

1 and xr
2 with Plücker coordinates

discussed in Section A.5.

B.3. M2. Line + Point: Triangulation with a Known
3D Point

For each commonly shared 3D point between the refer-
ence line segment and the matched segment, we can formu-
late a line triangulation solution using a known 3D point.
Compared to algebraic line triangulation, M2 can generate
stable endpoints for weakly degenerate cases where one of
the two endpoints has degenerate configurations.

As discussed in the paper, we ensure that the endpoints of
the generated proposal lie on the camera rays of xr

1 and xr
2.

such that Xi = λix
r
i for i = 1, 2. Therefore, the problem

becomes a constrained least square problem with respect to
the ray depths of the two endpoints λ = (λ1, λ2). The least-
square error is the residual from Eq. (2) (or equivalently,
(15)), which is quadratic to λ. We can denote the least square
residual as λTAλ+ bTλ without loss of generality.

Since both endpoints lie on the camera rays with Xi =
λix

r
i , we can convert the problem into a 2D subproblem

by applying a global rotation Rr such that Rrxr
i has zero

value at the third dimension for i = 1, 2. Next, we will
discuss how to acquire a closed-form solution for λ to this
2D subproblem.

B.3.1 Closed-form Solution to the 2D Subproblem

Let p1 and p2 be the 2D points (after applying Rr and remov-
ing the third dimension). The back-projected 3D endpoints
become v1 = λ1p1, v2 = λ2p2. Take p0 as the 2D projec-
tion of the known 3D point on the plane, the constraints for
the three points p0, v1, v2 to be collinear is:

det([v1 − p0, v2 − p0]) = 0 (16)

This is a quadratic equation in λ1 and λ2, and can thus be
written as

λTQλ+ qTλ = 0 (17)

Note that there is no constant term since det(p0,p0) = 0.
Combining the least square error λTAλ + bTλ and intro-
ducing Lagrange multiplier µ we have:

L(λ, µ) = λTAλ+ bTλ+ µ(λTQλ+ qTλ). (18)

First-order constraints are then
∂L
∂λ

= 2Aλ+ b+ 2µQλ+ µq = 0 (19)



∂L
∂µ

= λTQλ+ qTλ = 0 (20)

From (19) we get λ as a function of µ,

λ(µ) =
−1

2
(A+ µQ)

−1
(b+ µq), (21)

Then inserting into (20) we get

p(µ) = λ(µ)TQλ(µ) + qTλ(µ) (22)

which is a rational function in µ. The numerator is a degree
quartic polynomial in µ which can be solved in closed form
solution to recover µ. Backsubstituting into (21) yields the
corresponding ray-depths λ. We substitute into the cost for
each of the (up to four) real solutions and take the one which
minimizes the cost to get the final triangulation.

B.4. M3. Line + VP: Triangulation with a Known
3D Direction

One can also generate stable proposals for the weakly
degenerate case when a known 3D direction is available,
which can come from the vanishing point estimation. This,
similarly, can also be converted into a 2D problem since we
assume that the 3D endpoints lie on the two camera rays
of the two endpoints xr

1 and xr
2. Specifically, take v as

the 3D direction from the vanishing point, we assume that
the projection of v on the plane spanned by xr

1 and xr
2 is

collinear with the vector between the two endpoints, which
results in Eq. (4) in the main paper. Since this equation is
linear with λ, the problem becomes a least square problem
minimizing λTAλ+ bTλ with a linear constraint on λ. By
introducing the Lagrange multiplier we can easily reduce the
problem to a quadratic polynomial, which can be solved in
closed form.

C. Details on Point-line Association
In this section, we present details on how we build the

point-line association graphs initially in 2D and then in 3D,
and further show two extensions of the recovered association
graphs on generating local plane proposals and identifying
the structural layout.

Points and lines are naturally associated in 3D structures.
Most salient points lie on top of the lines and the corner
points mostly come from the intersection of two or more
lines. However, directly discovering point-line relations in
3D is not an ideal choice because the 3D distance is always at
an unknown local scale, which is ambiguous to be tested with
a predefined threshold and may result in wrong association.
The idea of our approach is to first associate lines with points
and vanishing points in 2D, and then employ the association
graphs in triangulation and joint optimization, the latter of
which results in 3D association graphs as a byproduct output.

(a) 2D line-point association (b) 2D line-VP association

Figure 1. Visualization on the 2D association graphs among
lines and points (a) / vanishing points (VPs) (b). (a) 2D line-point
association. We only show points that are associated with at least
one line. The points with degree 1 are colored blue, while the points
with degree ≥ 2 are colored red. (b) 2D line-VP association. The
lines that are associated with the same VP are colored the same.

C.1. More Details on 2D Association

First of all, we aim to recover two association graphs for
each image in 2D: a line-point association graph and a line-
VP association graph, each of which is a bipartite graph. By
recovering the relations we can traverse the graph on each
image switching back and forth between lines and points
/ VPs by walking along the connected edges. This can be
useful for the following steps in our pipeline:

• Point-guided line triangulation, where we can use
the neighboring points and vanishing points to generate
additional constraints.

• Construction of 3D vanishing point tracks, where we
can associate vanishing points from different images
using 2D-3D track associations in the line maps.

• Joint optimization with soft association. We can
traverse the 2D association graph to measure how likely
a line track is associated with a point / VP track in 3D
by counting the 2D edges among their supports.

The advantages of these relational graphs are not limited
to the aforementioned examples. Acting as fundamental
geometric information for the sparse features, it can be bene-
ficial to most sparse feature-based modules and applications
with careful algorithmic designs. In the following parts we
present details on how we build the 2D association graphs.

2D Line-Point Association. The line-point association
graph is built over the 2D point and line features. We employ
SuperPoint [13] as the point feature extractor as it aims to
detect corners on the image. For each pair of a 2D point and
a 2D line segment, we measure the distance between them
(i.e. the distance between the 2D point and the nearest point
on the 2D line segment) and add an edge in the bipartite
graph if the distance is less than a pixel threshold, which in
our case is set to 2 pixels. In theory, the threshold should



depend on the uncertainty of the line detector. An example
illustration of the resulting line-point association graph is
shown in Fig. 1(a).

2D Line-VP Association. The line-VP association graph is
naturally built from the 2D vanishing point estimation. In
this special bipartite graph, the line has at most one degree,
while the vanishing point has at least 5 degrees to be con-
sidered valid. In our system, for vanishing point detection
we use JLinkage [50], which aims to detect vanishing points
for general parallel lines. One can also employ orthogonal
vanishing point detectors [6] from which the orthogonality
constraints can be acquired from 2D, yet it will lose the par-
allelism information for lines that are not aligned with the
three main orthogonal axes. An example illustration of 2D
vanishing point estimation and the resulting association is
shown in Fig. 1(b).

C.2. More Details on 3D Association

C.2.1 Constructing 3D Vanishing Point Tracks

We can make use of the 2D association graph to build 3D
vanishing point tracks from the recovered line tracks by
transitively propagating the line correspondences.

Specifically, considering the graph with all detected van-
ishing points from each image as nodes, we aim to associate
them together into a set of 3D vanishing point tracks. We
connect two nodes from different images if:

• they share at least three common neighboring line tracks
on its corresponding 2D line-VP bipartite.

• the angle between their vanishing point directions in
the global frame is less than 10 degrees.

Once two nodes are connected, we also assign the weight
of the edge to be the number of the common neighboring
line tracks. Then, we sort the edges with respect to their
weights in descending order and apply Kruskal-like VP track
construction with the exclusion that each image only con-
tributes one VP in a track, similar to the existing practice on
constructing point tracks [14].

C.2.2 Joint Optimization

As discussed in the paper, the joint optimization consists of
the energy terms EP , EL, and EPL. We optimize the 3D
lines, points, and vanishing points jointly. Specifically, each
3D line is converted into an infinite line and parameterized
with Plücker coordinate (4 DoF) as discussed in Section
A, and each 3D vanishing point is parameterized with a 3-
dimensional homogeneous vector (2 DoF). The variables of
the final problem exhibit 3NP + 4NL + 2NV P degrees of
freedom in total, where NP , NL, and NV P are the number

of 3D points, lines, and vanishing points, respectively. In the
following, we will discuss the three energy terms in detail.

EP . Data term for the point tracks. This term is defined
as the squared reprojection error for each point track, which
is exactly the same as in the regular bundle adjustment in
COLMAP [42].

EL. Data term for the line tracks. This term is defined as
the reprojection error for each line track, termed geometric
refinement in the main paper. For the line-only solutions
in the experiments, we only employ this term in the final
optimization solely over 3D line tracks. The residual is
formulated as:

EL(l) =
∑
k

w2
∠(Lk, ℓk) · e2perp(Lk, ℓk), (23)

w∠(Lk, ℓk) = exp(α(1− cos(∠(Lk, ℓk)))), (24)

where α equals 10.0 in our system. This weighting term
w∠ follows the design of L3D++ [20], which empirically
promotes fast convergence by putting the emphasis to make
the 2D direction consistent with the observation. Note that
compared to 1−cos(∠(Lk, ℓk)) in our formulation, the resid-
ual in L3D++ [20] is directly built on the angle ∠(Lk, ℓk),
which exhibits singularity on the gradient at zero angles and
sometimes results in unstable optimization.

EPL. 3D Association Term. This term encourages 3D
association among lines and points / vanishing points. Specif-
ically, it consists of three parts: line-point association, line-
VP association, and VP orthogonality regularization.

• 3D Line-Point Association. As discussed in the main
paper, the association term is built between each pair
of point track and line track that has at least three con-
nected edges (on the 2D line-point association graphs
from the corresponding images) among their 2D sup-
ports. Each residual is defined as the 3D point-line
distance weighted by the number of 2D connections
among supports, which can be efficiently computed
with Plücker coordinate as discussed in Section A.4.

• 3D Line-VP Association. As in the point case, the
association term is built between each pair of VP tracks
(built as in Section C.2.1) and line track that has at least
three connected edges (on the 2D line-point association
graphs from the corresponding images) among their
2D supports. Each residual is defined as the sine of
the direction angle between the line and the vanishing
point, again weighted by the 2D connections among
supports.



• VP Orthogonality Regularization. Since we do not
employ orthogonal vanishing point detection [6] to en-
sure the generality of the system, we do not have any
orthogonal information from 2D. However, at joint op-
timization, we can enforce the nearly orthogonal pairs
(in practice, when the angle is larger than 87 degrees)
of vanishing points to be orthogonal. So we add a regu-
larization residual to these pairs, defined as the cosine
of the angle difference between the directions of the
vanishing point pair.

Note that in the joint optimization we do not have data
term for the 3D vanishing point. This means that we only
employ the 2D line-VP association graphs and enforce par-
allelism with soft association, without relying on the actual
vanishing point detection on 2D which can be sometimes
noisy. In this way, we only enforce the lines that are as-
sociated with the same VP to become parallel. Both the
line-point and line-VP association residuals are equipped
with Huber loss function from Ceres Solver [3] to ensure
robustness to outlier edges.

From the joint optimization, we can directly get the 3D as-
sociation graphs as a byproduct output, by testing the validity
of the active line-point / line-VP edges in the soft association
problem. The validity check measures the 3D point-line
distance and the 3D direction angle (≤ 5 degrees) respec-
tively. For the validity check of the 3D point-line distance,
we keep a fixed threshold of 2.0 and re-scale the distance
with the minimum uncertainty (defined as the depth divided
by the focal length) between the measured 3D point and 3D
line to ensure scale invariance. For the output 3D point-line
association graph this step removes the outlier edges that are
filtered out in the soft association problem at joint optimiza-
tion. Note that both the resulting 3D association graphs are
again bipartite graphs, among lines and points / vanishing
points.

C.3. Extension: Generating Local Plane Proposals

As a byproduct output of the system, the 3D line-point
association graph can be easily extended to benefit high-level
problems. We show one most straightforward extension on
generating local plane proposals in Fig. 2(a). From each
degree-2 3D point in the graph, we can compute the plane
normal by applying the cross product on its two neighboring
3D lines. From the resulting local planes, one can easily
group the plane structures and further recover the scene
layout. These planes are also potentially beneficial for visual
localization pipelines.

C.4. Extension: Atlanta World

From the recovered orthogonality relationship we can
easily parse the high-level structure relations in the output
3D maps. Figure 2(b) shows an example: From the six

axes 1

axes 2

(a) Local plane proposals (b) Atlanta World

Figure 2. Illustration of the extensions on the recovered 3D
association graphs. (a) Local plane proposals can be directly
acquired from the degree-2 junctions. (b) We show the recovered
orthogonal axes from joint optimization at the top left of the figure,
where two different Manhattan axes [11] are discovered, resulting
in an Atlanta World [41].

recovered orthogonality constraints we can get two groups
of orthogonal axes with a shared vertical direction, resulting
in an Atlanta World as discussed in [41].

D. Covariance Derivation and Setup for Syn-
thetic Tests

In this section, we will provide detailed covariance deriva-
tions for endpoint triangulation and algebraic line triangula-
tion respectively, which are used to compute the uncertainty
(the largest eigenvalue of the covariance) to study the degen-
eracy problem in the main paper. We also provide details of
the setup of the synthetic tests that are discussed in Figure 8
in the main paper.

In this section, we follow the convention of Section B,
where the world coordinate is aligned with the reference
frame without loss of generality, and the camera pose of
the matched image is (R, t). The intrinsic-normalized ho-
mogeneous coordinates for the endpoints of the reference
segment are xr

1 and xr
2, and xm

1 and xm
2 for the endpoints

of the matched segment.

D.1. Background: Covariance Propagation

Denote the 2D endpoints correspond to xr
1, xr

2, xm
1 , and

xm
2 as pr

1, pr
2, pm

1 , and pm
2 respectively. The input for the

triangulation problem is an 8-dimensional vector p2D, while
the output for the triangulation problem is a 6-dimension
vector p3D, where

p2D =


pr
1

pr
2

pm
1

pm
2

 , p3D =

(
Xr

1

Xr
2

)
. (25)

We can assume unit covariance on each endpoint of the
line detection and independence across different endpoints.
Then the 8× 8 covariance matrix of p2D can be written as:



Σ2D =


I2 0 0 0
0 I2 0 0
0 0 I2 0
0 0 0 I2

 = I8 (26)

Take fe and fl be the functions that maps p2D to p3D

with endpoint triangulation and algebraic line triangulation
respectively, and Je, Jl be their corresponding 6×8 Jacobian
matrices.

With the rule of covariance propagation, we can compute
the covariance Σe

3D and Σl
3D for endpoint triangulation and

algebraic line triangulation by

Σe
3D = JeΣ2DJT

e , Σl
3D = JlΣ2DJT

l , . (27)

The problem of measuring the covariance of the trian-
gulated 3D line segment reduces to the computation of the
corresponding Jacobian matrices Je and Jl.

We first provide here the Jacobian Jd of a normalized
direction vector d with respect to x, where d = x

∥x∥ :

Jd =
I − ddT

∥x∥
. (28)

For ease of notation in the following sections, we use dr
i

and dm
i (i = 1, 2) to denote the normalized ray directions

correspond to xr
i and RTxm

i respectively, and Cr = 0,
Cm = −RT t be the corresponding camera center.

D.2. Endpoint Triangulation

We employ the mid-point triangulation [17] for comput-
ing each of the 3D endpoints respectively. The formulation
of midpoint triangulation can be written as follows:

(
1 −dr

i
T
dm
i

−dr
i
T
dm
i 1

)(
λr
i

λm
i

)
=

(
dr
i
T
(Cm − Cr)

−dm
i

T
(Cm − Cr)

)
,

(29)

Xi =
1

2
(Cr + λr

id
r
i +Cm + λm

i dm
i ), (30)

where λr
i and λm

i are the ray depths of the rays dr
i and

dm
i respectively (i = 1, 2).

By using the property on the derivative of matrix inverse:

(K−1)′ = −K−1K ′K−1, (31)

we can compute the derivative of Xi with respect to the
direction vectors dr

i and dm
i . Combining (28) the final 6× 8

Jacobian Je can be computed with the chain rule.

D.3. Algebraic Line Triangulation

Similar to the endpoint triangulation, we can also formu-
late a linear system with respect to the direction vectors for
algebraic line triangulation. Specifically, we can rewrite (14)
into the following matrix form over dr

i , dm
1 and dm

2 :

(
dr
i −dm

1 −dm
2

) λr
i

βm
1

βm
2

 = Cm −Cr, (32)

Xi = Cr + λr
id

r
i , i = 1, 2 (33)

Again by using (28) and (31) the final 6× 8 Jacobian Jl
can be computed accordingly.

D.4. Setup for Synthetic Tests

Based on the derived covariance forms, we present study
on the degeneracy problem of line triangulation in the main
paper (Figure 8). We here discuss the detailed setup for the
two experiments.

Uncertainty Visualization on AdelaideRMF [53]. We
take an image pair from AdelaideRMF [53] and compute its
two-view geometry with COLMAP [42]. Then, we manually
annotate 42 line pairs that are perfectly matched. On top of
the annotated line matches we perform algebraic line triangu-
lation and compute the uncertainty as the largest eigenvalue
of the covariance matrix. We also visualize the epipolar lines
on the target image to better illustrate the relation to the de-
generacy problem. When visualized in 3D, the lines with low
uncertainty are reasonably accurate while the lines that are
degenerate (with high covariance) locate “everywhere” in the
3D space. This also shows that the largest eigenvalue of the
covariance matrix can be a good indicator of the reliability
of the triangulation.

Synthetic Tests. We design a synthetic test to further study
the stability of the line triangulation. Specifically, we first
set up a horizontal plane (z = 10) and two stereo cameras
that point orthogonal to the plane with a distance of 10.0.
The baseline (lying along the x direction) of the stereo pair
is 4.0 (so the two cameras locate at (−2, 0, 0) and (2, 0, 0))
and the focal lengths of both cameras are 700. Under this
setup, the epipolar lines are always horizontally aligned with
the stereo baseline. We sample random 3D lines with a fixed
direction on the horizontal plane (z = 10) within a range of
[−1, 1] on both x and y directions, and project them onto the
two views, resulting in perfect 2D line matches with a fixed
angle with the epipolar lines. Then, we perform endpoint
triangulation and algebraic line triangulation respectively,
and compute its covariance as discussed in Section D.2 and
D.3. We measure the uncertainty as the largest eigenvalue of



Line type Method R1 R5 R10 P1 P5 P10 # supports

LSD
[51]

Ours (line-only) 48.3 187.0 257.4 59.2 81.9 89.8 (15.8 / 19.1)
Ours w/ depth 89.7 315.3 330.8 63.0 99.7 100 (16.6 / 23.3)

SOLD2
[31]

Ours (line-only) 50.8 143.5 180.8 74.4 86.9 91.2 (15.1 / 32.2)
Ours w/ depth 84.4 252.0 278.2 79.7 99.7 99.9 (16.0 / 38.4)

Table 1. Quantitative results of line mapping given depth maps
on Hypersim [34]. Rτ and Pτ are reported at 1mm, 5mm, 10 mm
along with the average number of supporting images/lines.

Figure 3. Line mapping given depth maps. Left: DSLR sequence
of delivery area (44 images) from ETH3D [44, 45] with LSD [51]
and LiDAR scanner depth. Right: Laundry (scene 0678 01, 465
images at 6 FPS) from ScanNet [12] with SOLD2 [31] and depth
from an RGB-D sensor.

the covariance matrix. The median uncertainty is computed
for 10000 random lines for each tested angle.

E. Line Reconstruction given Depth Maps
E.1. System Details

As discussed in the paper, when depth maps are available
(e.g. from an RGB-D sensor), we can apply a robust fitting
to the back-projected 3D points to generate an accurate pro-
posal, which can serve as the best candidate for the 2D line
segment in the track building step.

Specifically, we sample points along the 2D line and
collect a set of 3D points by back-projecting the points using
the depth maps. Then, we apply 3D line fitting with LO-
RANSAC [10,28]. To ensure invariance to the scale changes,
the inlier threshold is proportional to the median depth of all
the points divided by the focal length, which shares similar
spirits with the scale factor σ used in the InnerSeg distance.
By associating those fitted 3D line segments with the same
track-building strategy, we can acquire high-quality line
tracks that align geometrically with the 3D depth maps.

E.2. Results on Line Mapping

We show quantitative results on line mapping given depth
maps on the first eight scenes of Hypersim [34] in Table 1.
As our solution on line mapping given depth maps does not
employ points and vanishing points, we show the compari-
son to our triangulation with only line-line proposals. While

Scene HLoc [35] w/ Depth PtLine [16] Ours w/ Depth

Chess 2.4 / 0.81 / 94.8 2.4 / 0.81 / 95.0 2.4 / 0.82 / 94.0
Fire 1.9 / 0.76 / 96.4 1.9 / 0.76 / 96.6 1.7 / 0.71 / 96.6
Heads 1.1 / 0.73 / 99.0 1.1 / 0.74 / 99.4 1.0 / 0.72 / 99.4
Office 2.7 / 0.83 / 83.7 2.7 / 0.83 / 83.9 2.6 / 0.80 / 84.7
Pumpkin 4.1 / 1.05 / 61.3 4.0 / 1.06 / 60.8 4.0 / 1.05 / 61.1
Redkitchen 3.3 / 1.12 / 72.1 3.2 / 1.12 / 72.5 3.3 / 1.12 / 73.0
Stairs 4.7 / 1.25 / 53.4 4.3 / 1.16 / 55.9 3.2 / 0.86 / 76.0

Avg. 2.9 / 0.94 / 80.1 2.8 / 0.93 / 80.6 2.6 / 0.87 / 83.5

Table 2. Visual localization on 7Scenes [46] with depth maps [8].
We report the median translation and rotation error in cm and
degrees, as well as the pose accuracy at a 5 cm / 5 deg threshold.

still far from perfect, the resulting 3D line maps are signifi-
cantly better compared to the ones built without depth maps.
Nearly all the recovered 3D lines are within 10 millimeters
of the ground truth mesh model. The track supports are also
significantly richer in comparison. Nevertheless, it is worth
noting that our line maps built with the assistance of points
and vanishing points can achieve a comparable number of
supports with SOLD2 line detector [31]. This again demon-
strates the advantages of point-guided line triangulation in
being able to generate reasonable proposals on degenerate
cases, which benefits the track-building process.

We further show qualitative results of line mapping with
depth maps in Figure 3, on ETH3D [45] and ScanNet [12]
respectively. The mapping solution can produce perceivable
3D line structures with either the LiDAR scanner depth from
ETH3D [45] or the RGB-D sensor from ScanNet [12], with
both conventional LSD detector [51] and the recent learning-
based one [31].

E.3. Results on Line-Assisted Visual Localization

As in the RGB case, we show here that line mapping
with depth maps is also able to help visual localization by
combining points and lines. We run our solution of line
mapping with depth maps on 7Scenes [46] with depth maps
from [8]. Then, we run our proposed point-line visual lo-
calization system with hybrid RANSAC [9] as discussed in
the paper (detailed in Sec. H). Results are shown in Table
2. Integrating line maps into visual localization improves
the localization accuracy, in particular contributing to a large
performance gain (53.4 → 76.0 on 5 cm / 5 deg) on the
most challenging scene: Stairs. This again demonstrates the
usefulness of the acquired 3D line maps.

F. More Implementation Details
F.1. Datasets

We test our method quantitatively on Hypersim [34]
and Tanks and Temples [26]. For the qualitative results
across datasets, we rely on two line detectors: SOLD2 and
LSD [51]. For SOLD2 [31] detection, description, and
matching, we employ the default parameters provided in



their released code repository. As SOLD2 [31] is originally
focused on indoor and manmade structured environments,
we test SOLD2 detection only on indoor datasets: Hyper-
sim [34] and ScanNet [12] (Figure 3 in supp.), while for the
other datasets LSD [51] is used to run our line mapping. For
all the datasets, we undistort images with the calibration (ei-
ther provided or estimated with COLMAP [42]) before per-
forming line detection, which mitigates the issue of straight
lines appearing curved due to radial distortion.

Hypersim [34] is a photorealistic synthetic dataset for
holistic indoor scene understanding. For evaluation, we
use the first 8 scenes and resize the image to a maximum
dimension of 800 as input to all the tested methods. The
average metrics over all the 8 scenes are reported. For neigh-
borhood computation, we use the point triangulator from
COLMAP [42] with SuperPoint [13] from HLoc [35] to
build the 3D model from images with known camera poses,
and rank neighboring images by the Dice coefficient on the
common 3D points. The reconstructed 3D lines are evalu-
ated with respect to the provided ground truth mesh model.
To efficiently compute the distance between a query point
sampled from the line and the mesh, we use the AABB hier-
archy from [22] as the data structure. Specifically, we first
build the hierarchy from the mesh model and sample points
densely and uniformly for each line to compute the overall
length recall Rτ and the inlier percentage Pτ .

Tanks and Temples [26] is a benchmark for image-based
3D reconstruction and is widely used for evaluating multi-
view stereo and novel view synthesis [33]. They provide
dense ground truth point cloud from a FARO Focus 3D
X330 HDR scanner. We input the images with their original
resolution (around 2 Megapixels) for both our method and
L3D++ [20]. The provided point cloud is cleaned such that
it only contains the main subject in the middle of the scene.
Since our method can reconstruct lines that are far away
from the model (see Figure 5 and Figure 5 Barn of the main
paper), we compute the axis-aligned bounding box for each
point cloud and stretch it one meter in all three dimensions.
At evaluation, only lines within the stretched bounding box
are considered. We evaluate on the train split and take the
average over all the scenes except for Ignatius which has
no observable line structures. For efficient computation of
the distance between the sampled point and the ground truth
point cloud, we build a KD-Tree over the ground truth point
cloud with nanoflann [7].

To further demonstrate the effectiveness and generaliza-
tion of our system, we also present qualitative results on
unstructured image collections on Aachen v1.1 Day-Night
dataset [40] and Rome city from BigSFM [2, 47, 48]. In the
supplementary material, we also present additional results of
our line mapping on Cambridge [24], PhotoTourism [23,47],
and also line mapping given depth maps on ETH3D [44, 45]
and ScanNet [12]. The oracle test in Figure 8 of the main pa-

L
2

L
1

d
perp

d
inner

L
1L

2

(a) Perspective distance (b) InnerSeg distance

Figure 4. Benefits of our scoring methods. (a) Ill-posed line
triangulations may have a low perpendicular score (in green), while
our perspective distance (in red) can filter them out. (b) The per-
pendicular distance (in red) is detrimental for very long segments,
while our proposed innerseg distance (in green) remains unbiased.

per is conducted on AdelaideRMF dataset [53]. The localiza-
tion experiments are run on Cambridge [25], 7Scenes [8,46],
and InLoc [49] (in this supplementary material).

F.2. Hyperparameters

Similar to all existing point-based solutions such as
COLMAP [42], our library also has a number of hyper-
parameters that can be changed in each module while using
our default ones at release should work on most in-the-wild
cases due to our scale-invariant design. We keep the hy-
perparameters unchanged throughout all experiments across
datasets.

The scaling factors introduced at scoring and track build-
ing are set as follows: τa = 10 degrees for the angle in 3D
and τa = 8 degrees in 2D, τo = 0.05 for the overlap in 2D
and 3D, τp = 5 pixels for the perpendicular distance in 2D,
and τs = 0.015 for the scale-invariant endpoint distance in
3D. The threshold for 2D point-line association is set to 2
pixels, and the inlier threshold for 2D VP-line association
with JLinkage [50] is set to 1 pixel. The detected vanishing
points with at least 5 inliers (associated lines) are kept on
each image. The minimum triangulation angle between the
camera ray and the plane spanned by camera rays xm

1 and
xm
2 is 1 degree.

F.3. Additional Discussions on Distance Measure-
ments

Benefits of Perspective Distance. The perspective distance
was originally proposed to filter out ill-posed line triangula-
tions that are almost colinear with the ray endpoints of the
corresponding 2D segment. In Figure 4, we show on the left
that such ill-posed triangulations may still have a small per-
pendicular error (in green), and thus, cannot be filtered out
with such a classic distance. On the contrary, our proposed
perspective scoring (proportional to the endpoint distances
in red) will penalize such bad triangulations.
Benefits of Innerseg Distance. Another drawback of the
perpendicular distance is that it penalizes long segments, as
visualized on the right of Figure 4 in red. These long lines



are however quite important to get clean reconstructions.
Our proposed InnerSeg distance (in green) can effectively
avoid this negative bias.
Scale Factor σ. The uncertainty of the line segment depends
on its depth with respect to the two views from which it is
triangulated. To make our triangulation invariant to scale
changes, we define the scale factor σ as the depth of the mid-
point divided by the focal length. This essentially encodes
how far the midpoint moves in 3D before reaching 1 pixel
error on the image. When testing if the InnerSeg Distance is
within a certain threshold, we rescale the distance with the
minimum scale factors of the two, which results in the scale
factor σ defined in the paper.

F.4. More Details on the System Design

Weak Epipolar Constraint. We also employ weak epipolar
constraints for filtering out matches for line triangulation
following [20]. We measure the IoU between the matched
segment and the intersected segments from two epipolar
lines from the reference endpoints, and filter out matches if
the IoU is below 0.1. For a fair comparison, we also update
this hyperparameter in L3D++ [20] to 0.1, as it empirically
gives better performance than its default parameter 0.25 (see
Tables 3 and 4).
Endpoint Aggregation. As discussed in the main paper,
after associating the best candidates from 2D line segments
into the 3D track, we take the mean and the principle di-
rections over all the 3D endpoints (of the candidates) in the
track to get an initial estimate of the infinite 3D line. As we
eventually aim to get 3D line segments, we need to compute
the 3D endpoints. This is done by projecting all the end-
points from the candidates in the track onto the estimated
infinite 3D line. In practice, we take the third outermost
endpoints on both sides to give better robustness to unstable
triangulations in the track. This robust selection of the third
outmost endpoint is also done after joint optimization, when
the optimized infinite 3D line with Plücker coordinate is
converted into a 3D line segment.
Track Remerging. Optionally, we also support remerging
similar tracks together after track building, as some tracks
may have very close 3D lines. Specifically, we can recom-
pute the pairwise scores among the re-fitted 3D lines of each
track, and greedily merge tracks with a stricter threshold.

F.5. Details on L3D++ [20] and ELSR [52]

For L3D++ [20], we use the open-sourced implementa-
tion from their official repository [19]. For SOLD2 detec-
tor [31], we detect line segments in advance and save the
segments into a compatible format that can be processed
from L3D++ [19]. We update two of their hyperparame-
ters: visual neighbors from 10 to 20, and IoU threshold for
the weak epipolar constraint from 0.25 to 0.10, to enable
fair comparison, while we also present their results with the

Figure 5. Illustration on the advantages of our scale-invariant
design. Left: L3D++ [20]. Right: Ours. Both systems are run on
Horse from Tanks and Temples [26]. We show two different views
on the full scene where our method can reconstruct lines that are
far away from the main subject. Refer back to Figure 4 in the main
paper for zoom-in comparison on the horse.

default hyperparameters in Tables 3 and 4.
For ELSR [52], we use the official release from the au-

thors on their website. Since they only support VisualSfM
input [54] with LSD detector [51], we convert the COLMAP
model triangulated on Hypersim [34] and provided from
Tanks and Temples [26] into the VisualSfM format [54] such
that it is compatible with their implementation.

G. More Results on Line Mapping
G.1. Scale invariance

Our pipeline is robust to scale changes. This not only
refers to the global scale of the scene, but also refers to the
local scale of the sub-components of the whole scene: it is
very common that one gets different layers of subjects and
buildings with large depth changes.

To demonstrate the benefits of our scale-invariant de-
sign, we here show a visualization of how the scale-invariant
design can help to reconstruct lines across very different
scales in Figure 5. Specifically, We compare the recon-
structions of Horse from Tanks and Temples [26] given by
L3D++ [20] and our method. Our method is able to recon-
struct many more far-away lines in the background compared
to L3D++ [20], while providing a very accurate reconstruc-
tion for close-by details as well (see Figure 4 of the main
paper).

G.2. More Comparisons with L3D++ [20]

To further highlight the advantage of our proposed line
mapping over L3D++ [20], we study the recall-precision
trade-off by relaxing the requirements for minimum num-
ber of supporting images in the final output 3D line tracks



Line type Method R1 R5 R10 P1 P5 P10 # supports

LSD
[51]

(nv = 4) L3D++ default param. [20] 34.6 139.9 196.6 53.3 82.6 92.6 (11.6 / 12.5)
(nv = 4) L3D++ [20] 37.0 153.1 218.8 53.1 80.8 90.6 (14.8 / 16.8)
(nv = 4) ELSR [52] 13.9 59.7 96.5 55.4 72.6 82.2 (N/A / N/A)
(nv = 4) Ours 48.6 185.2 251.3 60.1 82.4 90.0 (16.4 / 20.5)
(nv = 3) L3D++ default param. [20] 40.9 166.2 235.8 49.3 76.7 86.9 (8.7 / 9.4)
(nv = 3) L3D++ [20] 40.6 168.8 242.8 50.3 77.3 87.6 (12.1 / 13.6)
(nv = 3) ELSR [52] 13.9 59.7 96.5 55.4 72.6 82.2 (N/A / N/A)
(nv = 3) Ours 51.9 198.1 271.0 56.7 78.2 86.3 (13.6 / 16.8)

SOLD2
[31]

(nv = 4) L3D++ default param. [20] 29.7 84.7 102.3 67.2 88.5 96.0 (9.9 / 12.4)
(nv = 4) L3D++ [20] 36.9 107.5 132.8 67.2 86.8 93.2 (13.2 / 20.4)
(nv = 4) Ours 54.3 151.1 191.2 69.8 84.6 90.0 (16.5 / 38.7)
(nv = 3) L3D++ default param. [20] 34.9 102.3 127.1 61.3 82.2 90.4 (7.4 / 9.2)
(nv = 3) L3D++ [20] 40.3 118.7 148.0 62.3 82.0 89.6 (10.6 / 16.0)
(nv = 3) Ours 55.6 155.4 197.4 66.8 82.0 88.0 (14.1 / 32.5)

Table 3. More results on Hypersim [34] with minimum 3 supporting images. We also add the results of L3D++ [20] with its default
hyperparameters. “nv” denotes the minimum number of supporting images for a line track to be included in the final output. Note that even
compared to L3D++ with nv = 3, our mapping with nv = 4 achieves significantly better recall while being better on precision at all thresholds
as well. This demonstrates the superiority of our method over L3D++ [20] when moving along the recall-precision trade-off curve.

Method R5 R10 R50 P5 P10 P50 # supports

(nv = 4) L3D++ default param. [20] 215.4 477.7 1543.6 41.3 55.8 87.2 (6.4 / 6.5)
(nv = 4) L3D++ [20] 373.7 831.6 2783.6 40.6 54.5 85.9 (8.8 / 9.3)
(nv = 4) ELSR [52] 139.2 322.5 1308.0 38.5 48.0 74.5 (N/A / N/A)
(nv = 4) Ours (line-only) 472.1 1058.8 3720.7 46.8 58.4 86.1 (10.3 / 11.8)
(nv = 4) Ours 508.3 1154.5 4179.5 46.0 56.9 83.7 (10.4 / 12.0)

(nv = 3) L3D++ default param. [20] 313.1 698.3 2351.6 32.2 44.0 72.5 (4.7 / 4.8)
(nv = 3) L3D++ [20] 473.7 1058.1 3622.4 35.6 48.5 79.6 (6.6 / 7.0)
(nv = 3) ELSR [52] 139.2 322.5 1308.0 38.5 48.0 74.5 (N/A / N/A)
(nv = 3) Ours (line-only) 564.8 1267.2 4539.0 43.2 54.5 83.7 (7.8 / 8.9)
(nv = 3) Ours 606.7 1379.5 5047.1 42.1 52.8 80.9 (7.9 / 9.0)

Table 4. More results on Tanks and Temples [26] with minimum 3 supporting images. We also add the results of L3D++ [20] with its default
hyperparameters. “nv” denotes the minimum number of supporting images for a line track to be included in the final output.

ELSR [52] LIMAP (Ours)

Figure 6. Qualitative comparisons with ELSR [52]. We show
two examples from Hypersim [34] and Tanks and Temples [26].

from 4 views to 3. This is actually the default setting for
L3D++ [20] but we updated it in our main experiments for a
fair comparison. We also compare with the default hyperpa-
rameters used in L3D++ [20] using 10 visual neighbors and
0.25 IoU threshold for the weak epipolar constraints.

Tables 3 and 4 show the results on Hypersim [34] and
Tanks and Temples [26] respectively. The relative positions
of L3D++ [20] and our method are similar when we relax
the required minimum supporting images to 3 views. Here it
is worth mentioning that, when comparing our method with
nv = 4 against L3D++ [20] with nv = 3 (the default in L3D++
release), we can see that our method is significantly better in
both the length recall and precision on all thresholds. This
further demonstrates our advantages over L3D++ [20] on the
precision-recall curve. The performance gain becomes larger
when comparing our line mapping with L3D++ [20] using
its default parameters. Since ELSR [52] does not provide
2D-3D track association, we cannot filter their output lines
with a minimum number of supporting views.

G.3. Qualitative Results of ELSR [52]

For completeness, we compare qualitatively our mapping
results with those from ELSR [52] in Figure 6. While ELSR
[52] is able to produce reasonable 3D line maps, it often
fails to recover lines where the point and plane features are
limited. On the contrary, our method recovers significantly
more complete structures with better accuracy, and provides



British Museum from [47] Florence Cathedral Side from [47] London Bridge from [47]

Piazza San Marco from [47] Lincoln Memorial Statue from [47] St. Paul’s Cathedral from [47]

Old Hospital from [25] St. Mary’s Church from [25] Auditorium from [26]

Courtroom (indoor and outdoor) from [26] Truck from [26] Train from [26]

Lighthouse from [26] Museum from [26] Temple from [26]

Figure 7. More qualitative results of the 3D line maps recovered by our framework.



Matcher
Detector LSD [51] HAWPv3 [55] TP-LSD [21] SOLD2 [31]

LBD [57] 42.2 / 58.5 / (14.0 / 14.6) 6.0 / 58.0 / (7.8 / 9.8) 21.6 / 73.2 / (9.1 / 9.3) 30.7 / 69.3 / (12.2 / 18.7)
SOLD2 [31] 48.3 / 59.2 / (15.8 / 19.1) 14.7 / 62.7 / (11.2 / 20.1) 44.4 / 76.4 / (14.3 / 16.7) 50.8 / 74.4 / (15.1 / 32.2)
L2D2 [1] 44.4 / 59.6 / (15.0 / 16.8) 13.5 / 63.4 / (10.7 / 18.3) 39.5 / 78.1 / (13.7 / 15.4) 43.9 / 72.8 / (13.7 / 24.9)
LineTR [56] 37.0 / 58.3 / (12.8 / 13.3) 5.4 / 60.5 / (8.4 / 10.7) 43.0 / 76.3 / (14.5 / 16.7) 29.0 / 70.1 / (12.3 / 19.9)
Endpoint SP [13] + NN 48.8 / 58.6 / (15.5 / 18.2) 16.2 / 63.2 / (11.2 / 20.0) 43.7 / 75.8 / (14.3 / 16.5) 49.1 / 73.7 / (14.7 / 31.4)
Endpoint SP [13] + SG [37] 48.4 / 58.0 / (15.8 / 18.9) 16.0 / 61.9 / (11.3 / 20.9) 47.1 / 76.1 / (14.5 / 16.8) 50.0 / 72.8 / (15.5 / 34.4)

Table 5. Extensibility of the framework to different line detectors and matchers. We show results of “R1 / P1 / #supports” for line
mapping on Hypersim [34] with only line-line proposals. Also, we present here two customized line matchers by matching the line endpoints
with either the nearest neighbor strategy (“Endpoint SP + NN”) or an advanced point-based matcher SuperGlue [37] (“Endpoint SP + SG”).

Line type Triangulation R1 R5 R10 P1 P5 P10 # supports

LSD
[51]

Endpoints 27.5 102.3 140.9 57.4 83.6 92.3 (13.1 / 13.3)
Line 48.4 185.4 255.2 58.0 80.7 88.6 (15.8 / 18.9)

SOLD2
[31]

Endpoints 29.4 87.6 111.3 67.0 83.8 90.4 (12.3 / 20.2)
Line 50.0 144.0 181.5 72.8 85.3 90.2 (15.5 / 34.4)

Table 6. Comparison between endpoint and line triangulation
with “Endpoint SP + SG” matcher on Hypersim [34]. While
endpoint-based line matcher achieves very promising performance
in Table 5, the endpoints of the matched line still do not necessarily
match each other, indicating that the performance gain may come
from the effectiveness of advanced point features [13].

rich 2D-3D track association that is critical for downstream
applications.

G.4. Extensibility to Different Line Detectors and
Matchers

To further show the flexibility of our framework to be
extended to different line detectors and matchers, we test
over several existing line detectors [21,31,51,55] and match-
ers [1, 31, 56, 57] on the first eight scenes of Hypersim [34].
We also present two new matchers that are based on end-
point correspondences. Specifically, we extract SuperPoint
features [13] over the two endpoints of the line and measure
the structured endpoint distance with either nearest neighbor
matching or an advanced point matcher SuperGlue [37].

Table 5 shows the results of all 6×4 combinations. Some
interesting facts can be observed from the table. TP-LSD
[21] achieves the highest precision with L2D2 [1], while
SOLD2 [31] achieves the highest length recall. LSD [51]
is consistently good on the length recall, while struggling
on precision and track association due to its nature of being
less structural. LineTR [56] is particularly good at matching
TP-LSD [21] lines, while struggling on other detections
compared to other matchers.

The endpoint-based line matcher is surprisingly effective,
as “Endpoint SP + SG” consistently achieves the best track
association under all detectors. We further test again the com-
parison between endpoint triangulation and algebraic line
triangulation to see whether the endpoints of the matched

line from the endpoint-based line matcher correspond to each
other. Results in Table 6 show similar trends as Table 3 in the
main paper, where performing algebraic line triangulation
is significantly better than directly triangulating endpoints.
This finding indicates that the endpoint-based matcher is
surprisingly effective on matching lines with, however, un-
matched endpoints, which may be due to the advantages of
the rich point features [13]. This encourages more research
towards integrating the success of existing point description
and matching solutions to improve line matching.

We believe that, with the flexible design and modular
Python bindings, our line mapping system can help bench-
marking and facilitate the progress of developing advanced
line detection and matching algorithms.

G.5. More Qualitative Results of Our Line Maps

We show more qualitative results of our reconstructed 3D
line maps across datasets [25, 26, 47] in Figure 7.

H. More Results on Visual Localization
In this section, we first present the design details of our

proposed visual localization pipeline with points and lines.
Then, we provide experimental details on Cambridge [25]
and 7Scenes [46] as well as per-scene results. Finally, we
show additional results on the large-scale InLoc dataset [49].

H.1. Details on Our Visual Localization Pipeline

The input to the proposed visual localization pipeline is
a set of 2D-3D point correspondences (from point-based
SfM model, e.g. COLMAP [42], or depth maps) and line
correspondences (from LIMAP). We directly use the point
correspondences processed by HLoc [35]. Our pipeline is
implemented within a hybrid RANSAC framework [9, 39]
with local optimization [10, 28]. In the hybrid RANSAC
we combine four different minimal solvers on 2D-3D point
correspondences (PCs) and 2D-3D line correspondences
(LCs) in the following:

• P3P [32]: 3 PCs.
• P2P1LL [58]: 2 PCs + 1 LC.
• P1P2LL [58]: 1 PC + 2 LCs.
• P3LL [58]: 3 LCs.



Scene HLoc [35] PtLine [16] Ours

Great Court 9.5 / 0.05 / 20.4 11.2 / 0.07 / 17.8 9.6 / 0.05 / 20.3
King’s College 6.4 / 0.10 / 37.0 6.5 / 0.10 / 37.0 6.2 / 0.10 / 39.4
Old Hospital 12.5 / 0.23 / 22.5 12.7 / 0.24 / 20.9 11.3 / 0.22 / 25.4
Shop Facade 2.9 / 0.14 / 78.6 2.7 / 0.12 / 79.6 2.7 / 0.13 / 81.6
St.Mary’s Church 3.7 / 0.13 / 61.7 4.1 / 0.13 / 62.3 3.7 / 0.12 / 63.8

Avg. 7.0 / 0.13 / 44.0 7.4 / 0.13 / 43.5 6.7 / 0.12 / 46.1

Table 7. Per-scene results of visual localization on Cambridge
Dataset [25]. We report the median translation and rotation error in
cm and degrees, and the pose accuracy(%) at 5 cm / 5 deg threshold.

Scene HLoc [35] PtLine [16] Ours

Chess 2.4 / 0.84 / 93.0 2.4 / 0.85 / 92.7 2.5 / 0.85 / 92.3
Fire 2.3 / 0.89 / 88.9 2.3 / 0.91 / 87.9 2.1 / 0.84 / 95.5
Heads 1.1 / 0.75 / 95.9 1.2 / 0.81 / 95.2 1.1 / 0.76 / 95.9
Office 3.1 / 0.91 / 77.0 3.2 / 0.96 / 74.5 3.0 / 0.89 / 78.4
Pumpkin 5.0 / 1.32 / 50.4 5.1 / 1.35 / 49.0 4.7 / 1.23 / 52.9
Redkitchen 4.2 / 1.39 / 58.9 4.3 / 1.42 / 58.0 4.1 / 1.39 / 60.2
Stairs 5.2 / 1.46 / 46.8 4.8 / 1.33 / 51.9 3.7 / 1.02 / 71.1

Avg. 3.3 / 1.08 / 73.0 3.3 / 1.09 / 72.7 3.0 / 1.00 / 78.0

Table 8. Per-scene results of visual localization on 7Scenes [46].
We report the median translation and rotation error in cm and
degrees, as well as the pose accuracy at a 5 cm / 5 deg threshold.

We take the implementation from PoseLib [27] for all four
solvers to solve for the absolute camera pose. Following [9],
the sampling probability and termination criterion of each
solver depends on the inlier ratio. For scoring the model,
we measure reprojection errors on both the PCs and LCs.
Specifically, 2D perpendicular distance is employed for lines.
Additionally, we perform cheirality tests on both PCs and
LCs. The cheirality test for a 2D-3D line correspondence is
done by unprojecting both 2D endpoints onto the 3D infinite
line. This is achieved by projecting the camera rays onto
the infinite 3D line as discussed in Section A.5. Also, a
2D-3D line correspondence is considered an outlier if the
length of the 2D reprojection of the 3D line segment is
less than 2 pixels, or their overlap ratio on the 3D infinite
line is less than 0.4 (of the 3D line segment). For local
optimization, the joint point-line refinement is applied with
2D reprojection error (perpendicular distance for lines) with
an optional weighted Huber Loss via Ceres [3], where the
weights for points and lines are set similarly to the weights
according to the numbers of PCs and LCs. We apply the final
least square optimization on all the inliers after RANSAC
terminates.

H.2. Details and Per-Scene Results on Cambridge
and 7Scenes

For the experiments on both Cambridge [25] and 7Scenes
[46] Datasets, we run our line mapping system with LSD
line detections [51] and SOLD2 matching [31]. On both
datasets, the point-alone baseline employs the best method
combination in HLoc [35]: NetVLAD [4] + SuperPoint [13]

DUC 1 DUC 2

Points HLoc [36] 49.0 / 69.2 / 80.3 52.7 / 77.1 / 80.9

Points
+ Lines

PtLine [16] 49.0 / 69.2 / 81.8 56.5 / 76.3 / 80.2
Ours 49.5 / 72.2 / 81.3 60.3 / 76.8 / 81.7

Table 9. Results of visual localization on InLoc [49]. We report
the pose AUC at 0.25m / 0.5m / 1m and 10 degrees error.

+ SuperGlue [37]. For Cambridge [25], we also follow HLoc
[35] to resize the images to 1024×576. The inlier thresholds
of our hybrid RANSAC for both points and lines are set to
6 pixels on Cambridge [25] and 5 pixels on 7Scenes [46].
Up to the date of submission, the triangulated COLMAP
model [42] for Cambridge from the official repository of
HLoc [35] does not consider the radial distortion in the
VisualSfM model [54]. Fixing the issue and re-triangulating
the point-based 3D maps result in much better performance
than the original one, so we use our updated one as the
point-based baseline to evaluate our results. Our design with
hybrid RANSAC enables direct comparison since disabling
the three line solvers will fall into a point-based RANSAC
with P3P [32] which is equivalent to HLoc [35].

To compare with the recently proposed PtLine method
[16], we reimplement the match filtering and their midpoint-
based post-refinement strategy. Because both their line de-
tector and their strong point-based localization baseline is
not publicly available, we apply their method with our line
mapping over the initial poses retrieved by HLoc [35]. We
tune the IoU threshold (0.4 for Cambridge, 0.2 for 7Scenes)
for filtering to get the best results on both datasets.

We here provide the per-scene results of both the Pt-
Line [16] and our method on both datasets, in Tables 7 and
8 respectively, where our method consistently outperforms
the point-based baseline [35] and the joint point-line post-
refinement from PtLine [16]. The results are further sup-
ported under settings when depth maps are available in Table
2, as already discussed in Section E.

H.3. Results on InLoc dataset

We further test our method on InLoc dataset [49], again
comparing with HLoc [35] as our point-only baseline and
PtLine [16] as the only joint point-line visual localization
method. Results on both DUC1 and DUC2 are shown in
Table 9, where integrating line features again improves the
performance of point-based solution, while our solution is
consistently better than PtLine [16]. In particular, we im-
prove over the point-only baseline HLoc [35] on AUC @
0.25m by 7.6 on DUC2, by simply combining lines and
points in the hybrid RANSAC framework.



COLMAP [42] [42] + LIMAP (line-only) [42] + LIMAP

ai 001 001 68.0 / 87.0 / 91.3 78.3 / 91.1 / 93.8 80.0 / 91.7 / 94.2
ai 001 002 75.2 / 90.2 / 94.0 87.5 / 95.6 / 97.3 88.5 / 96.0 / 97.6
ai 001 003 83.8 / 94.4 / 96.6 82.9 / 94.0 / 96.4 85.7 / 95.1 / 97.1
ai 001 004 79.2 / 88.9 / 90.9 67.1 / 82.1 / 86.0 77.3 / 88.3 / 90.6
ai 001 005 85.1 / 94.9 / 97.0 88.4 / 96.1 / 97.7 90.9 / 97.0 / 98.2
ai 001 006 83.4 / 93.1 / 95.7 80.2 / 92.9 / 95.7 84.4 / 93.8 / 96.3
ai 001 007 59.0 / 68.5 / 70.6 64.5 / 70.6 / 71.9 65.0 / 70.3 / 71.7
ai 001 008 84.9 / 94.9 / 96.9 89.5 / 96.5 / 97.9 91.3 / 97.1 / 98.2

Average ↑ 77.3 / 89.0 / 91.6 79.8 / 89.9 / 92.1 82.9 / 91.2 / 93.0

Median error ↓ 0.188 0.173 0.146

Table 10. Per-scene results of joint bundle adjustment of points and
lines on Hypersim [34]. Relative pose errors are measured on all
image pairs. AUC @ (1◦ / 3◦ / 5◦) are reported for each method
and the average median error is reported an the bottom row.

Original COLMAP MVS [43] Same with line-based energy

Figure 8. Line-assisted multi-view stereo (MVS). Visualization
(from COLMAP [42, 43]) of the depth and normal maps from
COLMAP MVS [43]. Integrating line-based energy into Patch-
Match Stereo largely improves completeness.

I. More Results on Refining Structure-from-
Motion

We provide per-scene results in Table 10 on the joint
point-line bundle adjustment experiment presented in the
main paper. Combining lines with points consistently im-
proves the accuracy of point-based Structure-from-Motion
(SfM) on 7 of the 8 scenes, with notable improvement par-
ticularly on AUC@1◦ thanks to better pixelwise alignment
with the line structures. For completeness, we also show the
results with line-only optimization in Table 10. When the
line structures are rich in the scene, optimizing solely over
lines from the initialization of point-based SfM is able to
achieve reasonable results, while combining both points and
lines give the best accuracy and stability.

J. Line-Assisted Multi-view Stereo

In this section, we discuss on how to integrate the ac-
quired line maps into PatchMatch Stereo [42] with the as-
sumption of local planarity. Specifically, at each iteration of
the PatchMatch Stereo pipeline, we can add an additional
line-based energy that encourages the depth and normal at
each pixel to span a plane that crosses some nearby 3D line
segments. In practice, for each pixel, we collect all lines that
have projections within a 2D perpendicular distance of half
the line length. During the proposal selection in PatchMatch
Stereo [43], we compute the perpendicular distances (sum
of the perpendicular distance for both endpoints) of all col-

reference image target image correspondences

Figure 9. Illustration on how to extend featuremetric optimization
[29] over 3D line tracks.

lected lines to the corresponding plane proposal (spanned at
each pixel with its depth and normal in PatchMatch), and
sum the two minimum distances from the two closest lines
as the line-based energy. This encourages the selected depth-
normal pair to span a plane having at least two 3D lines that
are very close, implicitly encouraging local planarity on the
recovered surface with respect to the 3D line maps.

We show one qualitative result on AdelaideRMF [15] in
Figure 8 to illustrate the advantage of line-assisted Patch-
Match Stereo [43]. With the line-based energy, both the
depth map and surface normal map become more complete
in texture-less regions, and the surface normal map is com-
parably more smooth thanks to the local planarity implicitly
enforced by the 3D line maps.

K. Extension: Featuremetric Line Refinement
Inspired by the recent success of featuremetric refinement

for point-based Structure-from-Motion [29, 38], we here
present ideas on how to extend its application for 3D line
refinement. This type of refinement can be potentially very
suitable for lines, since compared to point-based alternatives,
line detectors usually have higher localization errors in the
image. For points, it is straightforward to define feature-
metric consistency loss by simply interpolating the feature
map at the point locations and computing the difference. To
apply the same framework for lines, it is also necessary to
establish point-wise correspondences along the line to be
able to measure the feature consistency. One approach is
to parameterize the 3D line endpoints explicitly and sample
points between them. The two main drawbacks of this ap-
proach are that directly optimizing over the endpoints might
suffer from endpoint collapse, and that during optimization,
the supporting images for each sampled point might change
as the endpoints shift.

To avoid these issues, we here present an alternative for-
mulation that instead optimizes over the infinite 3D line and
defines the sample points directly in 2D. The idea is to pa-
rameterize the sampling of points through line intersection
(Figure 9). Specifically, we first uniformly sample 3D points
between the two initial endpoints. For each sampled 3D
point, we determine the supporting images and 2D line seg-
ments. From these 2D line segments, we select the reference



line segment as the longest one and construct a perpendicular
2D line based on the projection. The sampled 3D points are
then discarded. For the optimization, we project the infinite
3D lines onto the images, which are then intersected with
the perpendicular 2D lines to give us the 2D sample points
in the reference views. These sample points are then mapped
to epipolar lines in the set of supporting images, and then
by intersecting with the projections of the 3D line, we get
the corresponding sample points in the other views. With
these point-wise correspondences, we can compute the fea-
turemetric consistency loss used in the optimization. This is
illustrated in Figure 9. The infinite line can again be mini-
mally parameterized with Plücker coordinate discussed in
Section A.

To reduce memory requirements for the feature maps, a
specially designed line patching strategy can be employed,
where an oriented bounding box around the lines is extracted
with bilinear sampling on the non-integral coordinates. The
2D rotation and translation are stored along with each line
patch for the local-global coordinate transformation. This
line patching can significantly save memory while still allow-
ing us to accurately interpolate the features of the sampled
points lying close to the line segment.

L. Limitations and Future Work
In this section, we discuss the current limitations of the

proposed system and give an overview of potential areas for
improvement and future work.

The current system is designed to reconstruct 3D lines
from known camera poses, i.e. we focused on the mapping
step of the reconstruction pipeline. While we show in the
experiments that the system is robust to imperfect camera
poses (e.g. obtained from SLAM or SfM), it is still dependent
on the point-based reconstruction/tracking working and we
cannot recover if they fail. Interesting future work is to
integrate our mapping pipeline into an incremental Structure-
from-Motion framework. We believe this is a promising
direction as our experiments show that both localization
(i.e. registering a new image to a reconstruction) and bundle
adjustment can be improved with our line maps.

The system is also dependent on the reliability of the
employed line detector and matcher, as shown in Table 5.
Improving the detection, description, and matching of 2D
lines can benefit a lot on the resulting 3D line maps. While
this is beyond the scope of this paper, by sharing our library
with the community we hope to facilitate relevant research
developments on 2D line-related practice.

The current system design is partly due to the fact that we
have weaker detectors and matchers for lines compared to
points. This requires more excessive geometric verification
before building tracks compared to point-based triangulation
methods which can be more greedy in their selection. While
line triangulation is inherently less stable than point triangu-

lation, improvements in line detection and matching might
lessen the need for geometric verification.

References
[1] Hichem Abdellali, Robert Frohlich, Viktor Vilagos, and

Zoltan Kato. L2d2: Learnable line detector and descriptor. In
3DV, 2021. 13

[2] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Si-
mon, Brian Curless, Steven M Seitz, and Richard Szeliski.
Building rome in a day. Communications of the ACM,
54(10):105–112, 2011. 9

[3] Sameer Agarwal and Keir Mierle. Ceres solver. http:
//ceres-solver.org. 2, 6, 14

[4] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pa-
jdla, and Josef Sivic. Netvlad: Cnn architecture for weakly
supervised place recognition. In CVPR, 2016. 14

[5] Adrien Bartoli and Peter Sturm. Structure-from-motion us-
ing lines: Representation, triangulation, and bundle adjust-
ment. Computer Vision and Image Understanding (CVIU),
100(3):416–441, 2005. 1, 2

[6] Jean-Charles Bazin and Marc Pollefeys. 3-line ransac for
orthogonal vanishing point detection. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
pages 4282–4287. IEEE, 2012. 5, 6

[7] Jose Luis Blanco and Pranjal Kumar Rai. nanoflann: a
C++ header-only fork of FLANN, a library for nearest
neighbor (NN) with kd-trees. https://github.com/
jlblancoc/nanoflann, 2014. 9

[8] Eric Brachmann and Carsten Rother. Visual camera re-
localization from RGB and RGB-D images using DSAC.
TPAMI, 2021. 8, 9

[9] Federico Camposeco, Andrea Cohen, Marc Pollefeys, and
Torsten Sattler. Hybrid camera pose estimation. In CVPR,
2018. 8, 13, 14

[10] Ondrej Chum, Jiri Matas, and Josef Kittler. Locally optimized
ransac. In Joint Pattern Recognition Symposium, pages 236–
243, 2003. 8, 13

[11] James Coughlan and Alan L Yuille. The manhattan world
assumption: Regularities in scene statistics which enable
bayesian inference. In NeurIPS, 2000. 6

[12] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber,
Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In CVPR,
pages 5828–5839, 2017. 8, 9

[13] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Superpoint: Self-supervised interest point detection
and description. In Computer Vision and Pattern Recognition
Workshops (CVPRW), 2018. 4, 9, 13, 14

[14] Mihai Dusmanu, Johannes L Schönberger, and Marc Polle-
feys. Multi-view optimization of local feature geometry. In
ECCV, pages 670–686. Springer, 2020. 5

[15] Bin Fan, Fuchao Wu, and Zhanyi Hu. Robust line matching
through line–point invariants. Pattern Recognition, 45(2):794–
805, 2012. 15

[16] Shuang Gao, Jixiang Wan, Yishan Ping, Xudong Zhang,
Shuzhou Dong, Yuchen Yang, Haikuan Ning, Jijunnan Li,

http://ceres-solver.org
http://ceres-solver.org
https://github.com/jlblancoc/nanoflann
https://github.com/jlblancoc/nanoflann


and Yandong Guo. Pose refinement with joint optimization
of visual points and lines. In IROS, 2022. 1, 8, 14

[17] Richard Hartley and Andrew Zisserman. Multiple view geom-
etry in computer vision. Cambridge university press, 2003. 1,
2, 7

[18] William Vallance Douglas Hodge and Daniel Pedoe. Methods
of algebraic geometry, volume 1. CUP Archive, 1947. 1

[19] Manuel Hofer. Line3D++. https://github.com/
manhofer/Line3Dpp. 10

[20] Manuel Hofer, Michael Maurer, and Horst Bischof. Efficient
3d scene abstraction using line segments. Computer Vision
and Image Understanding (CVIU), 157:167–178, 2017. 1, 5,
9, 10, 11

[21] Siyu Huang, Fangbo Qin, Pengfei Xiong, Ning Ding, Yijia
He, and Xiao Liu. Tp-lsd: Tri-points based line segment
detector. In ECCV, 2020. 13

[22] Alec Jacobson, Daniele Panozzo, et al. libigl: A simple C++
geometry processing library, 2018. https://libigl.github.io/. 9

[23] Yuhe Jin, Dmytro Mishkin, Anastasiia Mishchuk, Jiri Matas,
Pascal Fua, Kwang Moo Yi, and Eduard Trulls. Image match-
ing across wide baselines: From paper to practice. IJCV,
129(2):517–547, 2021. 9

[24] Alex Kendall and Roberto Cipolla. Geometric loss functions
for camera pose regression with deep learning. In CVPR,
2017. 9

[25] Alex Kendall, Matthew Grimes, and Roberto Cipolla.
PoseNet: A convolutional network for real-time 6-DoF cam-
era relocalization. In ICCV, 2015. 9, 12, 13, 14

[26] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene
reconstruction. ACM Transactions on Graphics, 36(4), 2017.
8, 9, 10, 11, 12, 13

[27] Viktor Larsson. PoseLib - Minimal Solvers for Camera
Pose Estimation. https://github.com/vlarsson/
PoseLib. 14

[28] Karel Lebeda, Jiri Matas, and Ondrej Chum. Fixing the
Locally Optimized RANSAC. In BMVC, 2012. 8, 13

[29] Philipp Lindenberger, Paul-Edouard Sarlin, Viktor Larsson,
and Marc Pollefeys. Pixel-perfect structure-from-motion with
featuremetric refinement. In ICCV, 2021. 15

[30] Matthew T Mason. Mechanics of robotic manipulation. MIT
press, 2001. 1

[31] Rémi Pautrat, Juan-Ting Lin, Viktor Larsson, Martin R Os-
wald, and Marc Pollefeys. Sold2: Self-supervised occlusion-
aware line description and detection. In CVPR, 2021. 8, 9,
10, 11, 13, 14

[32] Mikael Persson and Klas Nordberg. Lambda twist: An accu-
rate fast robust perspective three point (p3p) solver. In ECCV,
2018. 13, 14

[33] Gernot Riegler and Vladlen Koltun. Stable view synthesis. In
CVPR, 2021. 9

[34] Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit Ku-
mar, Miguel Angel Bautista, Nathan Paczan, Russ Webb, and
Joshua M. Susskind. Hypersim: A photorealistic synthetic
dataset for holistic indoor scene understanding. In ICCV,
2021. 8, 9, 10, 11, 13, 15

[35] Paul-Edouard Sarlin. Visual localization made easy with
hloc. https://github.com/cvg/Hierarchical-
Localization/. 8, 9, 13, 14

[36] Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and
Marcin Dymczyk. From coarse to fine: Robust hierarchical
localization at large scale. In CVPR, 2019. 14

[37] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. Superglue: Learning feature match-
ing with graph neural networks. In CVPR, 2020. 13, 14

[38] Paul-Edouard Sarlin, Ajaykumar Unagar, Mans Larsson,
Hugo Germain, Carl Toft, Viktor Larsson, Marc Pollefeys,
Vincent Lepetit, Lars Hammarstrand, Fredrik Kahl, et al. Back
to the feature: Learning robust camera localization from pix-
els to pose. In CVPR, 2021. 15

[39] Torsten Sattler et al. RansacLib - A Template-based *SAC
Implementation. https://github.com/tsattler/
RansacLib. 13

[40] Torsten Sattler, Will Maddern, Carl Toft, Akihiko Torii, Lars
Hammarstrand, Erik Stenborg, Daniel Safari, Masatoshi Oku-
tomi, Marc Pollefeys, Josef Sivic, et al. Benchmarking 6dof
outdoor visual localization in changing conditions. In CVPR,
2018. 9

[41] Grant Schindler and Frank Dellaert. Atlanta world: An expec-
tation maximization framework for simultaneous low-level
edge grouping and camera calibration in complex man-made
environments. In CVPR, 2004. 6

[42] Johannes L Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. In CVPR, 2016. 5, 7, 9, 13, 14, 15

[43] Johannes L Schönberger, Enliang Zheng, Jan-Michael Frahm,
and Marc Pollefeys. Pixelwise view selection for unstructured
multi-view stereo. In ECCV, pages 501–518. Springer, 2016.
1, 15

[44] Thomas Schops, Torsten Sattler, and Marc Pollefeys. Bad
slam: Bundle adjusted direct rgb-d slam. In CVPR, pages
134–144, 2019. 8, 9

[45] Thomas Schops, Johannes L Schonberger, Silvano Galliani,
Torsten Sattler, Konrad Schindler, Marc Pollefeys, and An-
dreas Geiger. A multi-view stereo benchmark with high-
resolution images and multi-camera videos. In CVPR, pages
3260–3269, 2017. 8, 9

[46] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram
Izadi, Antonio Criminisi, and Andrew Fitzgibbon. Scene coor-
dinate regression forests for camera relocalization in RGB-D
images. In CVPR, 2013. 8, 9, 13, 14

[47] Noah Snavely, Steven M Seitz, and Richard Szeliski. Photo
tourism: exploring photo collections in 3d. In ACM SIG-
GRAPH, 2006. 9, 12, 13

[48] Noah Snavely, Steven M Seitz, and Richard Szeliski. Mod-
eling the world from internet photo collections. IJCV,
80(2):189–210, 2008. 9

[49] Hajime Taira, Masatoshi Okutomi, Torsten Sattler, Mircea
Cimpoi, Marc Pollefeys, Josef Sivic, Tomas Pajdla, and Ak-
ihiko Torii. Inloc: Indoor visual localization with dense
matching and view synthesis. In CVPR, 2018. 1, 9, 13, 14

[50] Roberto Toldo and Andrea Fusiello. Robust multiple struc-
tures estimation with j-linkage. In ECCV, 2008. 5, 9

https://github.com/manhofer/Line3Dpp
https://github.com/manhofer/Line3Dpp
https://github.com/vlarsson/PoseLib
https://github.com/vlarsson/PoseLib
https://github.com/cvg/Hierarchical-Localization/
https://github.com/cvg/Hierarchical-Localization/
https://github.com/tsattler/RansacLib
https://github.com/tsattler/RansacLib


[51] Rafael Grompone Von Gioi, Jeremie Jakubowicz, Jean-
Michel Morel, and Gregory Randall. Lsd: A fast line segment
detector with a false detection control. TPAMI, 32(4):722–
732, 2008. 8, 9, 10, 11, 13, 14

[52] Dong Wei, Yi Wan, Yongjun Zhang, Xinyi Liu, Bin Zhang,
and Xiqi Wang. Elsr: Efficient line segment reconstruction
with planes and points guidance. In CVPR, 2022. 1, 10, 11

[53] Hoi Sim Wong, Tat-Jun Chin, Jin Yu, and David Suter. Dy-
namic and hierarchical multi-structure geometric model fit-
ting. In ICCV, 2011. 7, 9

[54] Changchang Wu. Visualsfm: A visual structure from motion
system. http://www. cs. washington. edu/homes/ccwu/vsfm,
2011. 10, 14

[55] Nan Xue, Tianfu Wu, Song Bai, Fudong Wang, Gui-Song Xia,
Liangpei Zhang, and Philip HS Torr. Holistically-attracted
wireframe parsing. In CVPR, 2020. 13

[56] Sungho Yoon and Ayoung Kim. Line as a visual sentence:
Context-aware line descriptor for visual localization. IEEE
Robotics and Automation Letters, 6(4):8726–8733, 2021. 13

[57] Lilian Zhang and Reinhard Koch. An efficient and robust
line segment matching approach based on lbd descriptor and
pairwise geometric consistency. Journal of Visual Commu-
nication and Image Representation, 24(7):794–805, 2013.
13

[58] Lipu Zhou, Jiamin Ye, and Michael Kaess. A stable algebraic
camera pose estimation for minimal configurations of 2d/3d
point and line correspondences. In ACCV, 2018. 13


	. Background: Plücker Coordinate
	. Definition
	. Minimal Parameterization
	. Perspective Projection
	. Point-to-Line Projection
	. Line-to-Line Projection

	. Detailed Derivations for Different Types of Triangulations
	. Algebraic Line Triangulation
	. M1. Triangulation with Multiple Points
	. M2. Line + Point: Triangulation with a Known 3D Point
	Closed-form Solution to the 2D Subproblem

	. M3. Line + VP: Triangulation with a Known 3D Direction

	. Details on Point-line Association
	. More Details on 2D Association
	. More Details on 3D Association
	Constructing 3D Vanishing Point Tracks
	Joint Optimization

	. Extension: Generating Local Plane Proposals
	. Extension: Atlanta World

	. Covariance Derivation and Setup for Synthetic Tests
	. Background: Covariance Propagation
	. Endpoint Triangulation
	. Algebraic Line Triangulation
	. Setup for Synthetic Tests

	. Line Reconstruction given Depth Maps
	. System Details
	. Results on Line Mapping
	. Results on Line-Assisted Visual Localization

	. More Implementation Details
	. Datasets
	. Hyperparameters
	. Additional Discussions on Distance Measurements
	. More Details on the System Design
	. Details on L3D++ hofer2017efficient and ELSR wei2022elsr

	. More Results on Line Mapping
	. Scale invariance
	. More Comparisons with L3D++ hofer2017efficient
	. Qualitative Results of ELSR wei2022elsr
	. Extensibility to Different Line Detectors and Matchers
	. More Qualitative Results of Our Line Maps

	. More Results on Visual Localization
	. Details on Our Visual Localization Pipeline
	. Details and Per-Scene Results on Cambridge and 7Scenes
	. Results on InLoc dataset

	. More Results on Refining Structure-from-Motion
	. Line-Assisted Multi-view Stereo
	. Extension: Featuremetric Line Refinement
	. Limitations and Future Work

