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Abstract

In this supplementary material, we first provide the im-
plementation details of integrating our AdaptiveMix with
image generation methods, as well as that of applying it to
various visual recognition tasks such as robust image recog-
nition and OOD detection in Sec A.

We then elaborate on additional experimental details, in-
cluding datasets and additional evaluation criteria for the
image generation task in Sec. B. More experimental results
on image generation are also presented, showing our Adap-
tiveMix effectively improves existing state-of-the-art image
generation methods. Besides, we provide additional exper-
imental details of our AdaptiveMix on robust image recog-
nition and Out-Of-Distribution (OOD) tasks in Secs. C, D
and E.

A. Implementation Details

In this section, we elaborate on the implementation detail
of our proposed method. The public platform PyTorch [35]
is used to implement the experiments. Our models are
trained on a workstation with a CPU of 2.8GHz, RAM of
512GB, and 8 GPUs of NVIDIA Tesla V100 with 32 GB
memory capacity.

Our method is a plug-and-play module that can be in-
tegrated with different methods for various tasks. Hence,
the training strategies depend on the integrated method and
the task. In our main paper, we first integrate our proposed
AdaptiveMix with image generation methods i.e. WGAN
and StyleGAN-V2, respectively, and then apply it to recog-
nition tasks, including image classification, robust image
recognition, and OOD detection. To provide implementa-
tion details for our main paper, we first show the pseudo-
code for the proposed method on WGAN and then present
our training strategy on StyleGAN-V2. Finally, we summa-

rize the pseudo-code of AdaptiveMix for visual recognition.

AdaptiveMix-based Image Generation. To compre-
hensively evaluate AdaptiveMix, we respectively integrate
it with two state-of-the-art image generation methods,
WGAN [ 1] and StyleGAN-V2 [20], namely ”AdaptiveMix-
based WGAN” and ”AdaptiveMix-based StyleGAN-V2”.
The pseudo-code of “AdaptiveMix-based WGAN” is sum-
marized in Algorithm 1. Firstly, AdaptiveMix generates
hard samples 2 by the convex combination of real samples x
and generated samples x,. Then, AdaptiveMix loss is inte-
grated into the final learning objective. Sec. B provides ad-
ditional experimental details about our AdaptiveMix-based
image generation method.

Different from the training of WGAN, StyleGAN-V2
coupled with a series of advanced components for the un-
supervised image generation, including Style Mixing [19]
and Path Length Regularization. To avoid the disruption
of its original stable training by directly using hard sam-
ples, We modify the proposed AdaptiveMix to be used to
train StyleGAN-V2. As shown in Algorithm 2, we employ
AdaptiveMix to the real and generated samples separately.

AdaptiveMix-based Visual Recognition. The pseudo-
code of AdaptiveMix for visual recognition is summarized
in Algorithm 3. The final learning objective contains the
mixup-based cross-entropy loss function and the proposed
AdaptiveMix loss. Then, the trained network with Adap-
tiveMix is used for image classification and the Out-Of-
Distribution (OOD) detection in this paper.

B. Additional Details on Image Generation

This section introduces the datasets and experimental
settings for image generation, adversarial attack defense,
and OOD detection tasks, respectively.



Algorithm 1 AdaptiveMix-based WGAN

Algorithm 2 AdaptiveMix-based StyleGAN-V2

Input:
Generator Gy(-); Feature Extractor F,(-); Classifier
Head J3(-); The number of critic iterations per generator
iteration 7.

Output:
Trained Parameters 6;

1: while 6 has not converged do
2 fort =1ton. do
3: Sample x ~ p,, latent variable z ~ p.;
4: Sample A from Beta distribution B(«, «);
5 xg  Go(2);
6 & < g(x, g, A) by Eq. (1);
7 Lugan = BIT(F(G())] - E[T(F(@));
8: L+~ ﬁwgan + E [ﬁada];
T~Pr,Pg
9: ¢ < Adam( aff_ - );
10: By Adam(%);
11: end for
12: Sample latent variable z ~ p,;
132 L+ E [Loga) — E[T(F(G(2))));
I~Pr,Pg 2Pz
14: 0 < Adam(%);
15: end while
16: Return 6,

B.1. Datasets and Experimental Settings

Synthetic Dataset consists of data from two different
distributions, including mixed Gaussian distribution [34]
and mixed circle lines [3]. 50k points are sampled from
the distribution and each point is represented as a vector
containing abscissa and ordinate values. G(-) consists of
4 fully-connected hidden layers and D(-) is composed of
three fully-connected layers. ReLU activation and batch
normalization are used in G(-). The input code z is a 32-
dimensional vector sampled from a standard normal distri-
bution. Models are trained by Adam [22] for 500 epochs.

CIFARI10 [23]. For this dataset, DCGAN [36] is selected
as the architecture to test the performance of different learn-
ing objectives. The model is trained by Adam with 5;=0.0
and £2=0.999. The learning rate is 0.0001, with a decay
rate of 0.9 for every 50 epochs. The batch size for training
is 64. A 64-dimensional Gaussian distribution is adopted as
the input for G(-), while the output of f(D(-)) is set as a
16-dimensional embedding code.

CelebA [27]. The images are cropped, aligned, and re-
sized to 256 x 256. The learning rate is 0.0001 with a decay
rate of 0.9 per 2 epochs. A 128-dimensional Gaussian dis-
tribution is adopted as the input for G(+), and the output of
f(D(-)) is set as a 32-dimensional embedding code. D(-)
and G(-) are updated step by step. The remaining settings,

Input:
Generator Gy(-); Feature Extractor F,(-); Classifier
Head J3(-); The number of critic iterations per generator
iteration 7.
Output:
Trained Parameters 6;
1: while 6 has not converged do
2 fort =1ton. do
3 Sample x;, x; ~ p,, latent variable z;, z; ~ p,;
4: Sample A from Beta distribution B(«, «);
5: Tgi < GQ(Z,'); Tgj < Gg(Zj);
6 T g(zi, i, A);
7 Zg  g(xgi, Tgj, N);
8 Ly ngEp[J (F(2g))] = EIT(F(@))]:

0: L+ Ly+ E[Luda] + E [Loda] + R1 Reg.;
T~ Pr Lg~Pg
10: Ve Adam(a;(’f1 )
11: By <—Adam(ag%);
12: end for
13: Sample latent variable z ~ p.;
14 L+ E [Ly4a] + PLReg. — E[T(F(&4))];
Tg~Pg 2Pz
aLy.
15: 6 < Adam(%z);
16: end while
17: Return 6,

Algorithm 3 AdaptiveMix-based Visual Recognition

Input:
Feature Extractor F(-); Orthogonal Classifier 7 (-);
Output:
Trained F(-);
1: Initialize J (-) through Eq. (9);
2: while F(-) has not converged do
3: Sample (25, y:), (z5,y;) ~ (X, D)
Sample A from Beta distribution B(«, «);
fij — g(xi,xj, /\) by Eq. (1);
ij < 9(yi,y;, A) by Eq. (1);
3, U, Oij < F(@3), F(xj), F(&ij);
Le < §ijlog(T (F(2i5)))+0i5l09(T (9(vi, vj, A)))
Lada — Eq(2)
10: Li Lo+ Ladas
11: Update F(-) by minimizing L;;
12: end while
13: Return F(-);

R A

including architecture, optimizer, and evaluation metric, are
identical to the setting for CIFAR10.

AFHQ-CAT [5] includes 5,153 closeups for cat faces.
We resized all images to the resolution of 256 x 256 using
a high-quality Lanczos filter [24]. In this case, StyleGAN-



V2 [20] is set as the baseline. We kept its details iden-
tical with ADA [18], such as network architectures [20],
weight demodulation [20], style mixing regularization [19],
path length regularization, lazy regularization [20], equal-
ized learning rate for all trainable parameters [17], non-
saturating logistic loss [8] with R; regularization [32] and
Adam optimizer [22].

FFHQ [19] consists of 70,000 human face images. We
used a downscaled 256 x 256 version of FFHQ for train-
ing. We also applied a subset of FFHQ, i.e. FFHQ-5k [19],
which only contains 5,000 images for further discussion.
StyleGAN-V2 [20] is set as the baseline in this case and all
settings are identical to the setting for AFHQ-CAT.

Baselines. Since the proposed AdaptiveMix does not fo-
cus on new network architecture but introduces objective
functions, we mainly compare the proposed method to other
popular objectives for GANS, including standard GAN(Std-
GAN) [8], WGAN [1], WGAN-GP [10], HingeGAN [51],
LSGAN [31] and Realness GAN [44]. To further evaluate
our method on image generation task, we integrate Adap-
tiveMix on StyleGAN-V2 [20] and compare it to other reg-
ularization methods for GAN training, including Instance
Noise [40], One-sided LS [38], LC-Reg [41], ADA [18] and
APA [16].

Additional Evaluation Criterion. To quantify the gener-
ation performance of the different methods, Fréchet Incep-
tion Distance (FID) [15] and Inception Score (IS, higher is
better) [38] are adopted as the metrics. In all experiments,
50,000 images are randomly sampled to calculate FID and
IS. To evaluate the connection between the proposed Adap-
tiveMix and Lipschitz continuity, we design a metric as fol-
lows:

1 D, (F(x), F(x;
5 (F (@), F(z)))

Lip. = — 1
£ n Dy (zi, x;) M

,JEN

where x;,z; are the given pairs of samples. F(-) is
the discriminator of GAN. D, (+) calculates the distance be-
tween two embedding features and averages them along the
feature dimension. D, (-) calculates the distance between
two images and also averages them to a value. The smaller
Lip, is the better performance of F(+) to guarantee that the
Lipschitz continuity can be achieved.

B.2. Additional Experimental Results

Fig. A shows the FID convergence curves of WGAN,
WGAN-GP and AdaptiveMix (Ours), demonstrating that
our AdaptiveMix method improves the training conver-
gence substantially compared with WGAN.

Fig. B shows examples of the generated CIFAR-10 and
CelebA images when using AdaptiveMix in DCGAN. We
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Figure A. Training curves of WGAN, WGAN-GP and Adap-
tiveMix (Ours) on CIFAR10.

can see that AdaptiveMix can yield comparable results. As
shown in Fig. C, we show more generated images for the
FFHQ dataset. The images were generated with trunca-
tion ¢=0.75 and selected by setting random seeds. We can
see that StyleGAN-V2 with AdaptiveMix can produce high-
quality and photorealistic human faces.

C. Additional Details on Clean Image Recogni-
tion

Datasets and Experimental Settings. The effectiveness of
AdaptiveMix on image recognition is evaluated on CIFAR-
10, CIFAR100 [23], Tiny ImageNet [6] and ImageNet [37].
The WideResNet [49] with a depth of 28 and width of
10 (WRN-28-10) is adopted as the backbone for CIFAR-
10/100. For the Tiny-ImageNet [6], the backbone is set as
PreActResNet18 [13]. While for ImageNet [37], we used
the ResNet [12] with a depth of 50 (ResNet-50) as the back-
bone. In particular, the models are trained using SGD with
a weight decay of 0.0005 and a momentum of 0.9. For
CIFAR-10/100 and Tiny ImageNet, models are observed to
converge after 200 epochs of training. The list of learning
rates is set to [0.1, 0.02, 0.004, 0.0008], in which the learn-
ing rate decreases to the next after every 60 training epochs.
The noise term o is set to 0.05 for CIFAR-10 and 0.005
for CIFAR-100, respectively. For ImageNet, ResNet-50 is
trained for 90 epochs using downscaled 128 x 128 resolu-
tion images as input. The learning rate starts from 0.1 and
decays at 0.1 per 30 epochs.

D. Additional Details on Robust Image Recog-
nition

Datasets and Experimental Settings. The robustness of
the proposed method against adversarial attacks is evalu-
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(a) CIFAR10

(b) CelebA

Figure B. Generated images for (a) CIFAR-10 and (b) CelebA on the real dataset using DCGAN architecture with AdaptiveMix

Figure C. The experimental results carried on the FFHQ. The images correspond to random output produced by the generator of StyleGAN-

V2 with the proposed AdaptiveMix when truncation using ¢=0.75

ated on CIFAR-10, CIFAR100 [23], and Tiny ImageNet [6].
The training strategy and backbones for robust image recog-
nition are identical to Sec C. For data augmentation, we
employ horizontal flipping and cropping from the image
padded by four pixels on each side in this experiment. To
guarantee the fairness of performance comparison, all the
experiments are conducted under the same training proto-
col.

Two interpolation-based methods, i.e., Mixup [50] and
Manifold-Mixup [42], are involved for comparison in this
study. Although there are recent papers proposing new ways
to mix samples in the input space [11,21,47], they do not
achieve significant improvements over Mixup or Manifold-

Mixup, especially against adversarial attacks [21]. There-
fore, Mixup and Manifold-Mixup remain the most relevant
competing methods among the zoo of Mixup. Note that
our mixing strategy is based on Manifold-Mixup, which
performs as a solid baseline to validate the effectiveness
of AdaptiveMix. For a more comprehensive analysis of
the proposed method, an effective adversarial training, free-
AT [39], is also included for reference as the upper bound.
The evaluation metric is the classification accuracy on the
whole test set.

Attack Methods. To evaluate the robustness against adver-
sarial attacks, three popular adversarial attack methods, in-
cluding FGSM [9], PGD [2,30] and CW [4], are involved in



this study. The perturbation budget is set to 8/255 and 4/255
under /., norm distance for single- and multi-step attacks.
PGD-K denotes a K-step attack with a step size of 2/255.
For CW, two cases are considered, in which the steps are set
to 100 steps, and c is set to 0.01 and 0.05, respectively.

E. Additional Details on OOD Detection

Datasets and Experimental Settings In the OOD detec-
tion scenario, the training set of CIFAR-10 [23] is adopted
as the in-distribution data, and the test set of CIFAR-10
refers to the positive samples for OOD detection. Similar
to the prior works [25,26,28,48], the OOD datasets include
Tiny-ImageNet [6] and LSUN [46]. Tiny-ImageNet (a sub-
set of ImageNet [0]) consists of 10,000 test images with a
size of 36 x 36 pixels, which can be categorized into 200
classes. LSUN [46] consists of 10,000 test samples from
10 different scene groups. Since the image size of Tiny-
ImageNet and LSUN are not identical to that of CIFAR-10,
two downsampling strategies (crop (C) and resize (R)) are
adopted for image size unification, following the protocol
of [26,43,48]. Therefore, we have four OOD test datasets,
i.e., TIN-C, TIN-R, LSUN-C, and LSUN-R. The training
protocol and backbone for OOD detection is identical to
Sec. D.

For the competing methods, Softmax Pred. [14], Coun-
terfactual [33], CROSR [45], OLTR [28] and Union of 1D
Subspaces [48] are included. We also exploit the solutions
using Monte Carlo sampling or OOD samples [25,26] as the
references for competing methods. To some extent, these
methods can be seen as the upper bound for OOD detection
regardless of time consumption and over-fitting. For ex-
ample, Monte Carlo sampling [7,29] could generally yield
improvements to most current OOD methods with huge ex-
tra computational costs. The evaluation metric for OOD
detection is the F1 score, i.e., the maximum score over all
possible threshold ¢*.
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