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This document supplies more detailed information and
visual comparisons of our method. We first introduce the
employed pix2pix network and loss function in Section 3.3
of the manuscript. Then, we show more visual results in
different experimental conditions.

1. Pix2pix Network

Pix2pix [3–5] networks were widely used to achieve
an image-to-image translation. In this paper, the guided
compensation and alignment (GCA) stage casts this image
restoration problem as a task of image-to-image translation
under the guidance of the extracted thumbnail. The em-
ployed pix2pix network can be regarded as a coarse-guided
restoration network in the GCA. The architecture of the
pix2pix network is shown in Fig. 1 which consists of multi-
resolution generators (i.e., G1 and G2) and multi-resolution
discriminators (i.e., D1 and D2). The aim is to generate
a coarsely color-compensated and aligned image by fusing
the self-compensated image (from the self-compensation
and alignment (SCA) stage) and the bicubic upsampled low-
resolution thumbnail (from the JPEG file’s header).

Multi-resolution generators. The multi-resolution gen-
erators consist of two generators: a global generator G1
and a local generator G2 as shown in Fig. 1. Both gener-
ators consist of a convolutional downsampling front-end,
three residual blocks, and a transposed convolutional up-
sampling back-end, where the details of each component
are shown at the bottom of Fig. 1. The input of G2 is the
concatenated images of the self-compensated image and the
upsampled thumbnail, and the input of G1 is 2x downsam-
pled images from the input of G2. The corresponding output
of G1 is element-wise added with the feature maps from
the downsampling front-end of G2. Ref. [5] proved that
the multi-resolution generator structure is able to effectively
integrate the learned global and local information from the
image inputs to generate high-resolution image synthesis. In
our paper, the global information of the upsampled thumb-
nail, i.e., color and structure information, can coarsely and
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implicitly guide the compensation and alignment of the self-
compensated image that suffers from color cast and block
shifts. The final high-resolution image is restored in structure
and color except for realistic details, which will be sent to
a refine-guided Laplacian pyramid fusion network to refine
details (see Figure 2 of the manuscript).

Multi-resolution discriminators. The multi-resolution
discriminators contains two discriminators D1 and D2,
which have an identical architecture. The real and synthe-
sized high-resolution images are downsampled by a factor
of 2, such that the two-scale real and synthesized images are
employed to train D1 (with low scale) and D2 (with high
scale), respectively. The multi-resolution discriminators en-
courage the generators to produce both globally and locally
consistent images with different scales of the receptive field.

2. Loss Function

Here we introduce the adversarial loss LA, the feature
matching loss LFM , and the perceptual loss LV GG in Eq.
(6) of the manuscript.

Adversarial loss. The adversarial loss is defined as a
multi-task learning loss:

LA = min
G

max
D1,D2

∑
k=1,2

LGAN (G,Dk) (1)

where LGAN (G,Dk) is the adversarial loss of the k-the
discriminator of Dk, expressed as:

LGAN (G,Dk) = E(X)logDk(X)+E(X)logDk(G(Xs, T ))
(2)

where X , Xs, and T denote error-free real images, self-
compensated images, and the extracted thumbnail. G(Xs, T )
represents the output by the pix2pix’s generator.

Feature matching loss. Feature matching loss is defined
as the matching similarity of features in multiple layers of
the discriminator between the error-free real images and the
generated images, expressed as:
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Figure 1. Architecture of the pix2pix network. The input consists of two images: the self-compensated image (from the self-compensation and alignment
(SCA) stage) and the extracted thumbnail (from the JPEG file’s header). The output is the coarse image, which is guided by the thumbnail. The coarse image
is then sent to a refine-guided Laplacian pyramid fusion network to refine details (see Figure 2 of the manuscript). The details of each component are shown at
the bottom of the figure. s means the stride of the convolution.

LFM = min
G

∑
k=1,2

LFM (G,Dk) (3)

where LFM (G,Dk) is the feature matching loss with the
k-th discriminator Dk, expressed as:

LFM = E(X)

L∑
i=1

1

Ni

[
∥D(i)

k (X)−D
(i)
k (G(Xs, T ))∥1

]
(4)

where L is the total number of layers used for feature extrac-
tion, Ni denotes the number of elements in the i-th layer,
D

(i)
k is the extracted feature maps of the i-th layer in Dk.
Perceptual loss. Perceptual loss is used to measure the

high-level differences, e.g., content and style discrepancies,
between images. It is defined by the differences between
pre-trained VGGNet extracted feature maps, expressed as:

Lϕ,i
V GG(X̂,X) =

1

CiHiWi
∥ϕi(X̂)− ϕi(X)∥1 (5)

where X̂ is the final restored image of the network, Hi, Wi,
and Ci are the height, width, and channel of the i-th layer
in VGGNet. ϕi() denotes the output feature map of the i-th
layer.

3. More Visual Results
Comparison of SCA with/without alignment. Fig. 2

shows a visual comparison of SCA with/ without block align-
ment processing. As we can see from the figure, although
the proposed block alignment processing does not make
the processed image fully aligned, this processing delivers

better-aligned results than the SCA without the alignment,
which proves its effectiveness.

Comparison of coarse and refined images. Fig. 3 shows
a visual comparison of the coarse images by the pix2pix net-
work and the refined images by the Laplacian fusion network.
We can observe that the coarse images are not fully aligned
and have some artifacts. After the refine-guided Laplacian
fusion network processing, these artifacts are removed, and
more texture details are generated, which proves the effec-
tiveness of the proposed Laplacian fusion network.

Comparison of other methods. Fig. 4 shows a 1k-
resolution visual comparison of our robust decoder, SCA,
and GCA methods with standard decoder and the EPDN [4]
method. Figs. 5 and 6 show a 2k-resolution visual compar-
ison. We can see that our method consistently has supe-
rior results over other methods in different-resolution image
restoration.

Generalization of varying BERs of images. Fig. 7
shows more visual comparisons of the standard decoder,
our SCA, and our SCA+GCA (two-stage model) on the
AFHQ [1] dataset with different bit error rates (BERs). The
training is under the BER=10−5, and the testing is under
various BERs. These results demonstrate the superior gener-
alization ability of our two-stage method in handling varying
degrees of BERs of the JPEG file without retraining.
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Figure 2. Visual comparison of the SCA with/without the block alignment processing on the 2k-resolution Cityscape [2] dataset.
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Figure 3. Visual comparison between coarse images obtained by the pix2pix network and refined images obtained by the Laplacian fusion network on
1k-resolution Cityscape [2] dataset.
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Figure 4. Visual comparison of the proposed robust decoder, SCA, and GCA methods with the standard decoder and the EPDN [4] method on 1k-resolution
Cityscape [2] dataset.
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Figure 5. Visual comparison of the proposed robust decoder, SCA, and GCA methods with the standard decoder and the EPDN [4] method on 2k-resolution
Cityscape [2] dataset.
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Figure 6. Visual comparison of the proposed robust decoder, SCA, and GCA methods with the standard decoder and the EPDN [4] method on 2k-resolution
Cityscape [2] dataset.
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Figure 7. Visual comparison of the standard decoder’s results (Left) with our SCA’s (middle) and SCA+GCA’s results (Right) on various BERs in the
AFHQ [1] dataset.
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