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A. Implementation details

A.1. Flow Prediction Network

The flow Ft is computed between pairs of frames Pt

and Pt−1 and used in the flow energy term in Sec. 3.2,
where Ft = F (Pt). To ensure good generalization, we
first establish correspondence between input frames Pt and
Pt−1 via a correspondence network and induce the flow by
correspondence.

Built upon PointNet++ [7] MSG segmentation network,
the correspondence network takes point cloud P ∈ RN×3

as input and outputs a point-wise feature map f(P). Given
two features map f(Pt−1) and f(Pt) ∈ RN×d, where d =
64 is the feature dimension. We compute matching score
matrix S(P) ∈ RN×N :

S(P) = softmax(
1√
d
f(Pt−1) · f(Pt)

T
)

Each column of S(P) represents the probability of match-
ing point xt ∈ Pt into a point in Pt−1. At inference, Given
the query xt, we find the matching point xt−1

match ∈ Pt−1

by taking the argmax position in corresponding column of
S(P). Then the induced flow at location xt is given by
F (xt) = xt−xt−1

match. To ensure the induced flow achieves
high quality, we filter out spurious correspondences by
applying mutual nearest neighbors (MNN) criteria, which
guarantees the match falls into each other’s nearest neigh-
bor.

We train the correspondence network by minimizing the
the contrastive cross-entropy loss [5,9]. Each point in Pt−1

is treated as one class, and the ground truth label is com-
puted as the nearest neighbor of a point xt in Pt−1 when
Pt and Pt−1 are aligned. We train the correspondence
network under cross-entropy loss between predicted scores
S(P) and ground-truth labels S∗(P):

Lcorr = −
N∑
j=1

S∗(Pj)logS(Pj)

*equal advising, alphabetic order

A.2. Projecting to the Kinematic Model

The projection from estimated relaxed model to the valid
kinematic model is achieved by minimizing the cost over
Eproject, which consists of a spatial term Espatial and the 1-
DOF motion term E1-DOF, we explain each term in details.

Espatial. If two parts are linked, they should be close
in 3D space. The Espatial measures the spatial proxim-
ity of the parent-child pair pa(i) and i in canonical frame
Pc. We query the part segmentation field f and ex-
tract the corresponding part segmentation points of par-
ent and child ppa(i) = {x ∈ Pc|f(x) = pa(i)} and
pi = {x ∈ Pc|f(x) = i}. The Espatial(i, pa(i)) =
minx∈pi

miny∈ppa(i) ∥x − y∥22. To improve efficiency, we
do farthest point sampling from ppa(i) and pa(i) and sam-
ple 20 points per part to represent the set. We compute the
Espatial(i, pa(i)) for all part pairs in parallel.

E1-DOF. In articulated objects, if two parts are linked, their
relative transformation should be explained by a 1-DOF
screw joint. The E1-DOF in Eq. (12) computed the approxi-
mation error for the temporal sequence of relative transfor-
mation between parent pa(i) and child i treating as a 1DOF
transformation. The relative transformation sequence is
computed as {T̂t

pa(i) ⊖ T̂t
i}t∈1,...T between parent pa(i).

We compute the approximated screw parameters si, {θt}
by the following objective:

si, {θt} = argmin
si,{θt}

(∑
t

trace((T̂t
pa(i) ⊖ T̂t

i)⊖T(si,θ
t
i))

)
.

We solve the above for all part pairs i and pa(i). The resid-
ual error is taken as E1-DOF(i, pa(i)).

A.3. Merging.

To make the kinematic topology compact, we merge
parts that are close in space with small relative motion.
The static joint is a special case of the 1-DOF screw joint,
where the rotation and translation component both equal
to 0. Similar to E1-DOF, we define Emerge(i, pa(i)) =
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(a) Real scan (b) Before merging (c) After merging

Figure 1. Visualization of merging. We show the segmentation
of real-world switch before and after merging step.

∑
t trace((T̂t

pa(i) ⊖ T̂t
i) ⊖ I, where I is the identity ma-

trix. We merge pair pa(i) and i if Emerge(i, pa(i)) < ϵm,
meaning their relative motion is small. The merging is done
iteratively. We start from the part pair pa(i) and i with the
lowest Espatial and stop merging until all remained part pairs
have Emerge ≥ ϵm. In Fig. 1, we show segmentation of real-
world switch before and after merging step.

A.4. Final Fitting.

After projection and merging, we obtain a valid kine-
matic model Γ, {si}, {θt}, we infer the joint type (revolute
or prismatic) for part i and its parents by check {θt

i}t∈1,...T ,
where θt

i = (τ ti , d
t
i). As dicussed in Sec. 3.1, the rota-

tion angle of a prismatic joint is always zero, i.e. {τ ti =
0}t∈1,...T , while the translational component always be 0
for a revolute joint, i.e. {dti = 0}t∈1,...T . We compute the
mean τ̄i =

∑T
t=1 τ

t
i and d̄i =

∑T
t=1 d

t
i for part i. If τ̄i < d̄i,

we treat the joint between i and its parent pai as a prismatic
joint, otherwise as a revolute joint. In final fitting stage,
we ensure all the joints fall into these two classes and keep
{τ ti = 0}t∈1,...T for prismatic joint and {dti = 0}t∈1,...T for
revolute joint during optimization.

A.5. Canonical Frame Selection.

Our algorithm is flexible in taking arbitrary frames in
the input sequence as the canonical frame c. Certain frames
could make part segmentation field more easily separating
different parts, e.g. if two rigid parts undergo some similar
motion throughout the entire sequence, certain frames could
better capture those subtle differences and gives better seg-
mentation result. Thus, we develop a criteria for selecting
best canonical frame within the input sequence. We pick
the canonical frame by selecting the one with lowest Eproject
+ Egroup. Eproject is the same defined in Eq. (11). Egroup is
used to measure the deviation of each cluster in the segmen-
tation field. For each part i ∈ [1 . . . n], point segmentation
cluster pi = {x ∈ Pc|f(x) = i}, we compute the cluster
center ci = 1

|pi|
∑

x∈pi
x, the Egroup is computed as:

Egroup =
1

n

n∑
i=1

1

|pi|
∑
x∈pi

(x− ci)
2

A.6. Optimization Details

We set λCD = 1.0, λEMD = 0.3, and λflow = 1.0 for
Erecons in Eq. (5). Those parameters are tuned on valida-
tion set and fixed for all testing samples. We use knn = 3
for flow trilinear interpolation. We set λspatial = 100 and
λ1-DOF = 1.0 in Eq. (11), merging threshold ϵm = 3e − 2.
In relaxed model estimation stage, We optimize the model
for 15,000 iterations, EEMD is applied on 4× downsampled
point clouds and updated every 5 iterations. We use a co-
sine annealing schedule anneal for Gumbel-softmax tem-
perature. It start from 5.0 and decay 1.0 in the last itera-
tion. In final optimization stage, we optimize the model for
200 iterations, EEMD is applied on 2× downsampled point
clouds and updated every iteration.

A.7. Rearticulation

We can re-articulate our predicted model to a given tar-
get pose by only given a sparse set of point locations (Fig-
ure. 1). Given the source points, We use the part segmenta-
tion field to infer part labels and use forward kinematics in
Eq. (2) of the model M(θt;Γ, f) to deform those points to
match target points. We fix Γ, f and only optimize the joint
state parameters θ for 200 iterations with learning rate 0.1.
We optimize the MSE loss between the deformed points and
provided target points P′.

θ = argmin
θ

Lmse (M(θ;Γ, f),P′)

A.8. Implementation of the Baselines

We describe the implementation of baselines Multi-
BodySync [3] and WatchItMove [6].

MultiBodySync. MultiBodySync synchronizes between
all
(
T
2

)
states in the input sequence of length T and it-

eratively refinem the motion prediction and segmentation.
The method requires the eigen-decomposition of a Lapla-
cian matrix with size RNT×NT , N is the number of points
at each state. When input sequence becomes long, the ma-
trix computation becomes the bottleneck of the method and
could very hard to fit into the memory. To this end, we 2×
downsampled input point clouds to 2048 points as input.
MultiBodySync estimates the number of parts by analysing
the spectrum of predicted motion segmentation matrices
and counting the number of eigenvalues larger than a cut-
ting threshold. We found out this strategy works well on
Sapiens dataset, but performs poorly on RoboArt dataset
given the more complicated part motions controlled by the
kinematic tree. We choosing the cutting threshold among
[0.05, 0.005, 0.001] and choose the best one which is 0.001
on the validation set. We also increase the number of iter-
ations from 4 to 6 for better iterative refinement. However,
we found out the method still severely suffer from missing
parts and wrong motion prediction as shown in Fig. 5. The

2



method requires pairwise flow prediction, this could be ex-
tremely challenging in robot case with large deformations
between the start and the end of a long sequence.

WatchItMove. The original WatchItMove takes as input
multi-view RGB videos with strong cues on both geometry
and appearance. To apply WatchItMove to our setting with
the 4D point cloud, we adjust their implementation * with
two major changes: 1) Replace the photometric reconstruc-
tion loss with SDF L1 loss, where the label comes from
ground-truth signed distance field; 2) We use the ground-
truth # of rigid components. Both changes give certain
levels of advantage to WatchItMove. However, the results
demonstrated that motion cue is indispensable. Without
motion cues, there is no constraint to regularize the ellip-
soids motion. Though the overall shape could match to the
input and SDF loss could be minimized, those ellipsoids
could move with random motion internally. The result also
justify the importance of hard assignment of points to seg-
ments during training. Instead of using hard assignment,
WatchItMove uses soft assignment during training. The
motion of a certain point is blended by all ellipsoid motions.
At inference, we require each point follow one correspond-
ing ellipsoid motion by taking the argmax of segmentation
weights from all parts. The inconsistency between train-
ing and testing hinders the motion estimation performance.
We also note that it is crucial to incorporate the 1-DOF
constraint when building kinematic tree. Without consid-
ering the constraint could result in unmeaningful linkage as
shown in Fig. 5.

A.9. Evaluation Metrics

We discuss the reconstruction metrics, intermediate met-
rics and reanimataion metric in more details.

Reconstruction Metrics. We reconstruct the input se-
quence using our built animatable model M(θt;Γ, f). We
measure the per-point reconstruction error across all time
steps T . The flow is computed between the canonical frame
and all reconstructions in the sequence. For flow accuracy,
we set the treshold δ = 0.005 on RoboArt dataset and
δ = 0.05 on Sapiens dataset.

Intermediate Metrics. The tree edit distance is the
minimal-cost sequence of node edit operations to turn the
predicted tree into ground-truth. The three allowed opera-
tions are delete, insert and rename. Follow [8], we set re-
name cost to be 0 and all other two operations cost to be
1. Given the predicted kinematic tree is undirected, we tra-
verse all possible orders of the tree and select the minimum
one as the final metric.

*https://github.com/NVlabs/watch-it-move

Toy

Switch

Chair
(a) Input (b) Segmentation (c) Kinematics (d) Real scan

Figure 2. Qualitative results in real-world setting. We ver-
ify our method on three daily objects in each row, a toy (single
revolute), a switch (two prismatic) and a chair (multiple revolute
and prismatic). Each row shows in the input, part segmentation,
part connectivity and screw parameters (in red) for the inferred
joints, and the real scan captured by scanning apps of iPhone. Our
method is robust to noise and partial observations. Chair cushion
gets slightly over-seg due to noisy surface.

(a) Input (b) Segmentation (c) Topology (d) Flow

Figure 3. Qualitative results beyond 1DOF joints. We ap-
ply our method to model spherical joints of human on D-FAUST
dataset [2]. From left to right, we show the input human point
cloud sequence, part segmentation, part connectivity, and implied
flow. This demonstrates that our framework is general and can
tackle other joint types beyond 1DOF joints.

Reanimataion Metric. Given the ground-truth point
cloud in a novel frame, we sample one pair of corre-
spondence per-part between the canonical frame and novel
frame, which guarantees the novel part poses is impossi-
ble to recovered from ICP [1] or Kabsch [4] algorithm. We
use the provided sparse correspondences and algorithm de-
scribed in Appendix A.7 to deform the canonical frame into
novel frame, and measures the per-point error against the
ground truth.
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(a) Input (b) Predicted Model (c) Ground Truth

Figure 4. Qualitative visualization of prismatic joints on Sapi-
ens dataset. From left to right, We visualize the input point cloud
sequence, the predicted and ground truth articulated models. Dif-
ferent parts are in different colors, and we also show the screw
parameters (in red) for the inferred joints.

Table 1. Testing performance between prismatic vs. revolute
joints on Sapiens dataset. Prismatic joints could be harder to
predict than revolute joints.

Method Flow Error ↓ Multi-scan RI↑ Per-scan RI↑

Prismatic 4.80 0.64 0.64
Revolute 4.78 0.80 0.80

B. Additional Results
Real-world setting. We verified our method on real world
scans with diverse articulations and kinematic structures.
We choose three daily objects, a toy (single revolute), a
switch (two prismatic) and a chair (multiple revolute and
prismatic) and reconstruct their geometry. Each object has
five articulation states. The scans are gathered using scan-
ning apps on iPhone. The results are shown in Fig. 2. Our
method is robust to noise and partial observations. Chair
cushion gets slightly over-segmentation due to noisy sur-
face.

Beyond 1DOF joints. While our focus is on everyday ob-
jects, many of which have a piece-wise rigid structure with
1DOF joints, our framework is general and can tackle other
joint types by modifying the project and final fitting steps.
As a concrete example, spherical joints, which are a better
model human and animals, can be tackled by a) replacing
E1-DOF with E3-DOF

† in Eproject in Eq. (11), and b) opti-
mizing over spherical joint parameters (vs. screw params)
during final fitting. We show results on a 10 time-step hu-
man point cloud sequence from D-FAUST dataset [2] in
Fig. 3. This demonstrates that our framework can tackle
objects with more general joints.

Prismatic joints. Compare against revolute joints, pris-
matic joints could be harder to predict. The reasons include
1) less training samples; 2) segmentation is hard between

†E3-DOF measures how well the child part motion (relative to the par-
ent) is explained by rotation around a fixed center.

base part and cluttered prismatic part. A qualitative result
on Sapiens dataset is shown in Fig. 4. We also show pris-
matic joints (switch and chair) under real-world setting in
Fig. 2. The testing performance between prismatic vs. rev-
olute joints on Sapiens dataset are shown in Tab. 1.

Per-category performance on Sapiens dataset. We re-
port per-category (20 category in total) performance includ-
ing both flow error and Multi-scan RI on Sapiens daatset in
Tab. 2.

Comparison against MultiBodySync and WatchItMove
on RoboArt dataset. We provide additional comparison
results on remaining test set categories besides those shown
in Fig. 5 in the main paper. We compare our method
on all RoboArt test set robot categories against Multi-
BodySync [3] and WatchItMove [6], the qualitative com-
parison is shown in Fig. 5. As can be seen MultiBodySync
severely suffer from missing parts and and WatchItMove
suffer from incorrect topology given it only takes spatial
closeness into account when constructing the topology.

Qualitative Results Visualization on RoboArt dataset.
We provide additional qualitative visualization results in
Fig. 6 and Fig. 7 on robot categories of validation set and
remaining test set besides those shown in Fig. 4 in the
main paper. We visualize part segmentation, topology and
implied flow against ground-truth in each column. It can
be seen our method work well for all robots with arbitrary
topologies and geometries.

Reanimation Results on RoboArt dataset. We provide
additional reanimation results in Fig. 8 and Fig. 9 on robot
categories of validation set and remaining test set besides
those shown in Fig. 7 in the main paper. As shown in the
figure, we observe the results looks reasonable and match
to the sparse guidance input. This demonstrates our animat-
able models’s rearticulation ability.

Qualitative Results Visualization on Sapiens dataset.
We provided common Sapien categories prediction results
in Fig. 10 besides those shown in Fig. 6 in the main pa-
per. As shown in the figure, our method works well on arbi-
trary daily articulated objects with different geometries and
number of parts. We also show some inaccurate results in
the last row of Fig. 10. We found out those inaccuracy are
mostly caused by the noisy flow estimation provided by [3].

C. RoboArt Dataset
The RoboArt dataset consists of 18 robots, including 6

different robot type: arms, bipeds, hands, mobile manip-
ulators, humanoids, and quadrupeds. The robots, train-
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Table 2. Per-category performance on Sapiens dataset. We report flow error ↓ and Multi-scan RI ↑.

Box Dishwasher Display Furniture Eyeglasses Faucet Kettle Knife Laptop Lighter
6.4/0.84 6.7/0.82 3.6/0.68 4.2/0.84 2.9/0.85 2.9/0.71 5.5/0.76 4.2/0.72 5.7/0.79 3.0/0.88

Oven Phone Washer Pliers Safe Stapler Door Toilet TrashCan Microwave
7.0/0.75 3.5/0.66 3.6/0.76 2.19/0.77 3.7/0.84 7.5/0.78 2.9/0.74 3.0/0.77 6.5/0.82 5.8/0.83

Table 3. Robot type and categories on RoboArt dataset.

Robot Type Robot Categories

Arms Panda, UR5, Baxter, Kinova, iiwa
Bipeds Bolt, Cassie
Hands Allegro, Barrett
Mobile Manipulators Reachy
Humanoids Nao, Atlas, iCub, JVRC
Quadrupeds A1, Laikago, Solo, Spot

Table 4. RoboArt dataset train, validation, and test split.

Split Robot Categories

Train Atlas, Baxter, Laikago, iiwa
Validation Panda, Cassie, Spot, Panda

Test Kinova, UR5, Bolt, Allegro, Barrett
Reachy, iCub, JVRC, A1, Solo

validation-test split are shown in Tab. 3 and Tab. 4. For
each category, the points cloud sequence contain 10 frames
with 4096 points independently sampled in each frame. Vi-
sualization of different categories are shown in Fig. 11.
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MultiBodySync WatchItMove Ours GT
MultiBodySync WatchItMove Ours GT

Figure 5. Qualitative comparison against MultiBodySync [3] and WatchItMove [6] on the RoboArt dataset test set. Note, a)
MultiBodySync by itself doesn’t produce a kinematic tree, we use our method on top of their output to generate one, and b) we provide
WatchItMove [6] with the ground truth SDFs and number of parts (which are not used by our method). Even after these modifications, the
past methods cannot solve the task as well as ours.
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Input Predictions Ground Truth

(a) Input Point Clouds (b) Part Segmentation (c) Topology (d) Flow (e) Part Segmentation (f) Topology (g) Flow

Figure 6. Qualitative Results on RoboArt Dataset (1/2). Given the input point cloud sequence (shown in (a)), we show the part
segmentation, part connectivity, and implied flow using our inferred articulated model (in (b, c, d)) and the ground truth articulated model
(in (e, f, g))
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Input Predictions Ground Truth

(a) Input Point Clouds (b) Part Segmentation (c) Topology (d) Flow (e) Part Segmentation (f) Topology (g) Flow

Figure 7. Qualitative Results on RoboArt Dataset (2/2).

(a) Input (b) Pred (d) GT (a) Input (b) Pred (d) GT

Figure 8. Reanimation Results on the RoboArt Dataset (1/2). Given new locations for a sparse set of points on the object(shown in (a)),
our method (shown in (b)) is able to generate a reasonable reanimation to match the specified points.
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(a) Input (b) Pred (d) GT (a) Input (b) Pred (d) GT
Figure 9. Robot reanimation Results on the RoboArt Dataset (2/2).
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(a) Input (b) Predicted Model (c) Ground Truth

Stapler

Lighter

Trash Can
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Kettle
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(a) Input (b) Predicted Model (c) Ground Truth

Figure 10. Qualitative results of common categories on Sapiens dataset from [3]. We visualize the predicted and ground truth
articulated models. Different parts are in different colors, and we also show the screw parameters (in red) for the inferred joints. We
use the provided flow estimation model [3]. Last row show some inaccurate results mostly caused by the noise in flow estimation.
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Figure 11. Robot categories visualization on RoboArt dataset. Different parts are in different colors.
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