
Appendix for Class Adaptive Network Calibration

A. Penalty functions for ALM
Here, we provide the requirements for a penalty function

in Augmented Lagrangian Multiplier (ALM) method.
A function P : R × R++ × R++ → R is a Penalty-

Lagrangian function such that P ′(z, ρ, λ) = ∂
∂yP (z, ρ, λ)

exists and is continuous for all z ∈ R, ρ ∈ R++ and λ ∈
R++. In addition, it should satisfy the following four axioms
[1]:

Axiom 1: P ′(z, ρ, λ) ≥ 0 ∀z ∈ R, ρ ∈ R++, λ ∈ R++

Axiom 2: P ′(z, ρ, λ) = λ ∀ρ ∈ R++, λ ∈ R++

Axiom 3: If, for all j ∈ N, 0 < λmin ≤ λ(j) ≤ λmax <
∞, then: lim

j→∞
ρ(j) = ∞ and lim

j→∞
z(j) > 0 imply that

lim
j→∞

P ′(z(j), ρ(j), λ(j)) = ∞

Axiom 4: If, for all j ∈ N, 0 < λmin ≤ λ(j) ≤ λmax <
∞, then: lim

j→∞
ρ(j) = ∞ and lim

j→∞
z(j) < 0 imply that

lim
j→∞

P ′(z(j), ρ(j), λ(j)) = 0

where the first two axioms guarantee the derivative of the
Penalty-Lagrangian function P w.r.t. z is positive and equals
to λ when z = 0, while the last two axioms guarantee that
the derivative tends to infinity when the constraint is not
satisfied, and zero when the constraint holds.

There are many valid penalty functions [1]. In this paper
we adopt the PHR function suggested by [1] and confirmed
by our empirical results in Section 5 of the main text. We
also empirically compare with another two popular choices,
i.e. P2 and P3 [1], as shown in Figure 3 of the main text.
The formulations of the above three penalty functions are as
follows:

PHR(z, ρ, λ) =

{
λz + 1

2ρz
2 if λ+ ρz ≥ 0;

−λ2

2ρ otherwise.
(1)

P2(z, ρ, λ) =

{
λz + λρz2 + 1

6ρ
2z3 if z ≥ 0

λz
1−ρz if z ≤ 0

(2)

P3(z, ρ, λ) =

{
λz + λρz2 if z ≥ 0
λz

1−ρz if z ≤ 0
(3)

B. Dataset description with implementation de-
tails

Tiny-ImageNet [4] is a standard benchmark for image
classification and commonly used in the calibration liter-
ature [11,18]. It includes 64×64 dimensional images across
200 classes, with 500 images per class in the train set and 50
per class in the validation set. Following [18], we split out a
validation set by randomly choose 50 samples per class from
the train set, while the original validation set is used as the
test set. We train ResNet-50 [7] model by SGD optimizer
with a batch size of 128, and the number of epochs is set to
100 . A multi-step learning rate scheduling strategy is used,
i.e. learning rate 0.1 for the first 40 epochs, 0.01 for the next
20 epochs and 0.001 for the rest.
ImageNet [4] is a large-scaled image classification bench-
mark. We use the version of ILSVRC-2012 (or ImageNet-
1K) in our experiments (referred as ImageNet in this paper).
It consists of 1K object classes with 1.2M images for training
and 5K for validation. The average resolution of an image
is 469× 387. We follow [17] for evaluating calibration per-
formance on ImageNet, i.e. reserving 20% for validation
and the remaining 80% for testing. Besides ResetNet-50 [7],
we also train state-of-the-art transformer based network, i.e.
SwinV2-T [12], on this dataset. AdamW [15] optimizer is
applied, and a cosine learning rate scheduler [14] with an
initial learning rate of 0.001 is used. The number of training
epochs is set to 200 and 300 for ResNet-50 and SwinV2-T
respectively. The input size is 224 × 224 for ResNet-50
and 256× 256 for SwinV2-T, while the batch size is 1024
for training both networks. Regular data augmentation tech-
niques like random resized crop, random horizontal flips,
random color jitter, and random pixel erasing are applied on
the training samples.
ImageNet-LT [13] is truncated from ImageNet by sampling
a subset so that the labels of the training set follow a long-
tailed distribution. Overall, it has 115.8K images belonging
to 1K classes, and the number of samples per class ranges
from 5 to 1280. Both the validation and test sets are balanced,
where the validation set includes 20 images per class and the
original validation set in ImageNet is employed as the test
set. Regarding the networks and training details, we use the
same settings as those on ImageNet.
PASCAL VOC2012 [5] is a natural semantic segmentation
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TinyImageNet ImageNet ImageNet-LT 20 News

Method Pre-TS Post-TS Pre-TS Post-TS Pre-TS Post-TS Pre-TS Post-TS

CE 3.73 1.86 1.1 9.19 3.88 1.6 28.12 3.72 1.7 22.75 3.01 3.1

LS 3.17 1.79 0.9 2.57 2.57 1.0 10.46 3.32 1.3 8.07 3.69 1.2

FL 2.96 1.74 0.9 1.60 1.60 1.0 18.37 2.52 1.5 10.80 3.33 1.4

FLSD 2.91 1.74 0.9 2.08 2.08 1.0 17.77 3.40 1.4 10.87 4.10 1.4

CPC 4.88 2.66 1.5 3.66 2.00 1.1 16.00 3.22 1.2 9.46 4.35 1.4

MbLS 1.64 1.64 1.0 4.44 2.07 1.1 6.16 2.60 1.1 5.40 2.09 1.1

CALS-HR 2.50 1.82 0.9 5.63 1.68 1.4 2.83 2.83 1.0 6.99 3.14 1.1

CALS-ALM 1.54 1.54 1.0 1.46 1.28 1.1 2.15 1.81 0.9 2.04 1.86 1.1

Table 1. Calibration performance (ECE in %) when adding post temperature scaling (best T value for each method in subscript). The
architecture is fixed to ResNet-50 for the vision datasets and GPCN for 20 News dataset.

benchmark including 20 foreground object classes and an
additional background class. As the original test set is not
publicly released and it is unable to evaluate the calibration
performance via the official evaluation server, we split out
a validation set by randomly selecting 20% images from
the training set and treat the original validation set as our
test set. Overall, the training/validation/test split contains
1171/293/1449 images. For segmentation model training,
we employ DeepLabV3 [2] implemented by the popular pub-
lic library1, where we use ResNet-34 as encoder initialized
with pre-trained weights on ImageNet, and the decoder is
trained from scratch. The batch size is set to 8 and AdamW
optimizer is used with an initial learning rate of 0.001 along-
side a cosine learning rate scheduler. Finally, the maximum
training epoch is set to 100.
20 Newsgroups [9]. To evaluate the generalization of the
proposed method, we include a non-vision dataset, i.e. 20
Newsgroups, which is a text classification benchmark and
also used in previous calibration papers [11, 18]. It contains
20K news articles from 20 different groups according to the
content, e.g. rec.motorcycles, rec.autos, sci.space, etc. We
use the standard data split setting : 15, 098 documents for
training, 900 for validation and 3, 999 for testing. The Glove
word embedding [19] is used to encode the text and then
a Global Pooling Convolutional Network (GPCN) [10] is
trained. During training, we use Adam optimizer with an
initial learning rate of 0.001. We train the model for 100
epochs, where the learning rate is decayed by a factor of 0.1
after the first 50 epochs.

C. Additional results
Table 1 reports the results of post-training temperature

scaling (post-TS) on the outputs of the trained models [6].
Since this post-process technique is orthogonal to training
based methods, we also present the results of applying it to

1https://github.com/qubvel/segmentation_models.
pytorch

Method ImageNet ImageNet-LT

CE 0.036 0.090
LS 0.029 0.072
FL 0.030 0.087
FLSD 0.029 0.087
CPC 0.049 0.078
MbLS 0.030 0.072

CALS-HR 0.029 0.071
CALS-ALM 0.027 0.069

Table 2. Class-wise Calibration Error (CWCE in %) computed for
different approaches on ImageNet and ImageNet-LT. The architec-
ture is fixed to ResNet-5. Best method is highlighted in bold.

our method, as well as the related works. We can see that
our method without temperature scaling (pre-TS) outper-
forms previous methods, even post-TS, across all the bench-
marks. Additionally, the ECE of our model is further re-
duced with post-TS in some cases, for instance on ImageNet
(1.46% → 1.28%) and ImageNet-LT (2.04% → 1.81%).

Table 2 reports the performance on the two natural image
datasets, i.e. ImageNet and ImageNet-LT, in terms of Class-
wise Calibration Errors (CWCE) [16], which is a class-wise
extension of ECE. Our method consistently achieve the best
scores, with relative improvements of 25.0% on ImageNet
and 23.3% on ImageNet-LT.

In Table 3, we present results on the out-of-distribution
(OOD) scenario [17]. It is shown nn both settings, our
method achieves the lowest ECE on the target domain. These

CE LS FL MbLS Ours

ImageNet → ImageNet-C 26.25 24.00 23.73 26.55 22.52
ImageNet-LT → ImageNet-C 19.99 27.51 15.80 15.40 12.91

Table 3. ECE (%) on the out-of-distribution dataset, i.e. ImageNet-
C (Gaussian noise corruption with severity level 5), for models
trained on in-distribution datasets, i.e. ImageNet and ImageNetLT.

https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch


Hyper-parameter Value

Margin m (all vision tasks) 10
Margin m (text classification) 6
Initial multiplier λ(0) 10−6 · 1K

Initial Penalty parameter ρ(0) 1K

Penalty increasing factor γ 1.2
Constraint improvement factor τ 0.9
Period of penalty parameter update 10

Table 4. Hyper-parameters for our method, i.e. CALS-ALM.

results confirm the effectiveness of our method in the OOD
scenario.

D. Visualization of learned classwise multipliers
Figure 1 shows the evolution of learned multipliers λk

on ImageNet for the three classes with the highest average
and the three classes with the lowest average. This high-
lights the advantages of our method: 1) assigning distinct
penalty weights for different classes; 2) adaptively updating
the weight for each class throughout the training process.

E. Reliability diagram
Figure 2 presents the reliability diagrams for different

models trained on ImageNet and ImageNet-LT, which is a
standard way of visualizing calibration performance. The
curve of a perfectly calibrated model in the reliability dia-
gram should match the dashed red line, where the prediction
confidence perfectly reflects the accuracy of the model. It is
shown that the models trained with CE (left-most plots) are
over-confident, with accuracy mostly lower than confidence.
Our method, CALS, is the most effective one to pull the
curves closer to the expected lines, showing nearly perfect
calibration performances. In particular, the improvement on
ImageNet-LT is substantial compared to the other methods
like LS and FL, which further demonstrates that the pro-
posed class adaptive learning method could address the class
imbalance issue in the long-tailed dataset. On ImageNet,
LS and FL also present strong calibration performance, but
decrease the final accuracy as shown in Table 1 of the main
text. Overall, our method achieves the best compromise
between calibration and accuracy. It is noted that the obser-
vation from Figure 2 is supported by the quantitative scores
reported in Table 1 of the main text.

F. Hyper-parameter setting
Table 4 gives details of the hyper-parameter settings in

our method, i.e. CALS-ALM. Note, the margin values are
set by following [11], i.e. 10 for all the vision tasks including
classification and segmentation, and 6 for the text classifica-
tion on 20 Newsgroups.

Regarding the other methods in Table 1 of the main text,
we set their hyper-parameters by following previous works,
except that the values for MMCE [8] and CPC [3] are empir-
ically set according to our implementation. Detailed hyper-
parameter settings for each method are as follows:

• MMCE [8]: balancing weight λ = 0.1.

• ECP [20]: balancing weight λ = 0.1.

• LS [21]: smoothing factor α = 0.05.

• FL [18]: scaling factor γ = 3

• FLSD [18]: scaling factor γ is set to 5 for sk ∈ [0, 0.2)
and 3 for sk ∈ [0.2, 1), where k is the right class for
the sample.

• CPC [3]: balancing weights for the binary discrimina-
tion penalty and binary exclusion penalty are set to 10
and 1 respectively. It is noted that we re-implement
CPC since the official code is not publicly available.

• MbLS [11]: balancing weight λ = 0.1, margin m =
10 for all the vision tasks, and m = 6 for the text
classification task.
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Figure 1. Visualization of learned multipliers λk during the training of the ResNet-50 model on ImageNet. We show classes with the highest
average (Solid lines) and the lowest average (dashed lines).
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Figure 2. Calibration visualizations: (a) ImageNet (ResNet-50), (b) ImageNet (SwinV2-T), (c) ImageNet-LT (ResNet-50), and (d)
ImageNet-LT (SwinV2-T) . We present the reliability diagrams of our method (CALS), compared with those of baselines and closely
related works. The number of bins to plot reliability diagrams is set to 25.
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