
Continual Detection Transformer for Incremental Object Detection
Supplementary Materials

Yaoyao Liu1 Bernt Schiele1 Andrea Vedaldi2 Christian Rupprecht2

1Max Planck Institute for Informatics, Saarland Informatics Campus
2Visual Geometry Group, Department of Engineering Science, University of Oxford

{yaoyao.liu, schiele}@mpi-inf.mpg.de {vedaldi, chrisr}@robots.ox.ac.uk

We present the following supplementary content: results
with the traditional IOD benchmark protocol (§A), more ab-
lation results (§B), more visualization results (§C), and in-
structions for our code (§D). The source files of our code are
available at https://lyy.mpi-inf.mpg.de/CL-
DETR/

A. Traditional IOD protocol and results

This is supplementary to Section 4.2. In previous work [2],
in each phase, the incremental detector is allowed to ob-
serve all images that contain a certain type of objects. Be-
cause images often contain a mix of object classes, both old
and new, this means that the same images can be observed
in different training phases. This is incompatible with the
standard definition of incremental learning [3, 8, 10] where,
with the exception of the examples deliberately stored in the
exemplar memory, the images observed in different phases
do not repeat. Thus, we provide results with our new IOD
benchmark protocol in the main paper.

For completeness and comparison, here we also evaluate
performance using the traditional IOD benchmark protocol
used in [2], and provide comparison results between our
method and other top-performing IOD methods with this
protocol.
Traditional IOD protocol. Formally, let D = {(x, y)}
be a dataset of images x with corresponding object annota-
tions y, such as COCO 2017 [6], and let C = {1, . . . , C}
be the set of object categories. We adopt such a dataset for
benchmarking IOD as follows. First, we partition C into M
subsets C = C1 ∪ · · · ∪ CM , one for each training phase. For
each phase i, we modify the samples (x, y) ∈ D, where y
only contains annotations for objects of class Ci and drop
the others. In phase i of training, the model is only allowed
to observe images that contain at least one annotation for
objects of types Ci ⊂ C.
Experiment results. Table S1 shows that also with the
traditional IOD protocol our CL-DETR consistently per-

forms better than the state-of-the-art [2] and other IOD
methods [4, 5, 9]. Interestingly, our method achieves bet-
ter performance than other methods [2, 4, 5, 9] even without
using exemplars. For example, the AP of our CL-DETR w/o
ER is 2.3 percentage points higher than the AP of ERD [2]
in the 40 + 40 setting.

B. More ablation results

This is supplementary to Section 4.2.

Ablation results for λ. In Tab. S2, we show the ablation
results for λ on COCO 2017 in the 70+10 setting. We can
observe the peak AP is at λ=0.7, with a maximum perfor-
mance difference of only 1.0 percentage points using differ-
ent values. This demonstrates the robustness of our method
to different λ values. Further results and analysis will be
included in the final paper.

Separate validation sets. In Tab. S3, we provide abla-
tion results for different pseudo label selection strategies on
a separate validation set (COCO 2017, 70+10 setting). Re-
sults show that the “top-K selection” strategy performs best,
consistent with the findings in the main paper.

Iteratively improves detection. We apply curriculum
learning [1] for the hyperparameter, p, i.e., decreasing p
from 0.5 to 0.1 during the training. This way, the loss for
objects with low confidence will be ignored in the begin-
ning and only included later when the model becomes more
stable. Table S4 shows the results on COCO 2017 in the
70+10 setting. Curriculum learning for p slightly improves
(+0.3 AP) the final performance.

More fine-grained ablation results. Table S5 presents
partial fine-grained results using Deformable DETR on
COCO 2017 in the 70+10 setting. Results show that our
method, CL-DETR, outperforms related methods such as
LwF and iCaRL in terms of AP, old category AP, and FPP.
These results highlight the effectiveness of our CL-DETR
in addressing the forgetting problem.

1



Setting Method Detection baseline AP AP50 AP75 APS APM APL

40+40

LwF [5] GFLv1 17.2 25.4 18.6 7.9 18.4 24.3
RILOD [4] GFLv1 29.9 45.0 32.0 15.8 33.0 40.5
SID [9] GFLv1 34.0 51.4 36.3 18.4 38.4 44.9
ERD [2] GFLv1 36.9 54.5 39.6 21.3 40.4 47.5
CL-DETR w/o ER Deformable DETR 39.2±0.2 56.1±0.3 42.6±0.4 21.0±0.3 42.8±0.4 52.6±0.3

CL-DETR Deformable DETR 42.0±0.3 60.1±0.2 45.9±0.3 24.0±0.3 45.3±0.2 55.6±0.4

70+10

LwF [5] GFLv1 7.1 12.4 7.0 4.8 9.5 10.0
RILOD [4] GFLv1 24.5 37.9 25.7 14.2 27.4 33.5
SID [9] GFLv1 32.8 49.0 35.0 17.1 36.9 44.5
ERD [2] GFLv1 34.9 51.9 37.4 18.7 38.8 45.5
CL-DETR w/o ER Deformable DETR 35.8±0.3 53.5±0.2 39.5±0.3 19.4±0.3 41.5±0.3 46.1±0.4

CL-DETR Deformable DETR 40.4±0.2 58.0±0.3 43.9±0.2 23.8±0.4 43.6±0.3 53.5±0.3

Table S1. Supplementary to Table 1 (main paper). IOD results (%) on COCO 2017 with the traditional IOD protocol [2]. “CL-DETR” and
“CL-DETR w/o ER” are our methods. For “CL-DETR w/o ER”, we don’t save any exemplars. For “CL-DETR”, the total memory budget
for the exemplars is set as 10% of the total dataset size. The results for the related methods [2,4,5,9] are from [2]. In the A+B setup, in
the first phase, we observe a fraction A

A+B
of the training samples with A categories annotated. Then, in the second phase, we observe the

remaining B
A+B

of the training samples, where B new categories are annotated. We test settings A+ B = 40 + 40 and 70 + 10. We run
experiments for three different categories and data orders and report the average AP with 95% confidence interval.

Setting KD Our KD KD-oracle ER Our ER ER-oracle

AP 24.5 33.9 36.1 33.3 36.1 36.5

Table S2. Ablation results (%) for λ on COCO 2017 in the 70+10
setting.

Setting K=5 K=10 K=20 p≥0.1 p≥0.3 p≥0.5

AP 39.1 39.9 39.5 38.6 38.9 38.2

Table S3. Ablation results (%) for different pseudo label selection
strategies on a separate validation set (COCO 2017, 70 + 10 set-
ting).

Setting p≥0.1 p≥0.3 p≥0.5 Curriculum for p

AP 38.6 38.9 38.2 39.2

Table S4. Ablation results (%) for curriculum learning on COCO
2017 in the 70 + 10 setting.

Method All categories ↑ Old categories ↑ FPP ↓
AP APSAPMAPLAP APSAPMAPLAP APSAPMAPL

LwF 24.5 12.4 28.2 35.2 24.0 12.3 27.7 34.4 19.3 13.5 18.2 23.1
iCaRL 35.9 19.1 39.4 48.6 36.8 20.3 39.9 50.0 6.5 5.5 6.0 7.5
Ours 40.1 23.2 43.2 52.1 41.8 24.5 44.7 54.6 1.5 1.3 1.2 2.9

Table S5. Supplementary to Table 2 (main paper). More fine-
grained ablation results (%) for KD and ER, using Deformable
DETR [12] on COCO 2017 in the 70 + 10 setting.

Different exemplar replay methods. In Tab. S6, we pro-
vide ablation results for different exemplar replay meth-
ods. Our “distribution-persevering” exemplar replay strat-

egy achieves better performance (higher AP and lower
FPP) compared to the existing strategies in the related
works [10, 11]. This shows that creating an exemplar set
that follows the natural data distribution of COCO 2017 im-
proves the results, compared to existing strategies that try
to select a category-balanced subset of the data as the ex-
emplar set and thus change the original data distribution.

C. More visualization results

This is supplementary to Section 4.2. Figure S1 visual-
izes the one-to-one matching between the merged bound-
ing boxes and new model predictions (yellow) in some
training samples in COCO 2017. The merged bounding
boxes include the old category pseudo (blue) and new cate-
gory ground-truth (green) bounding boxes. We can observe
that the old category pseudo and new category ground-truth
bounding boxes are complementary and indicate the old and
new category objects, respectively. It shows our method
successfully resolves conflicts between pseudo and ground-
truth bounding boxes and ensures the model ignores back-
ground predictions.

D. Source Code in PyTorch
We provide our PyTorch code at https://lyy.mpi-

inf.mpg.de/CL-DETR/
In the following, we introduce how to install the environ-

ment and run the code.
Installation. To run this project, please install Python 3.7
with Anaconda.

1 conda create -n cl_detr python=3.7



Row Exemplar replay strategies
All categories ↑ Old categories ↑ FPP ↓

AP APS APM APL AP APS APM APL AP APS APM APL

1 Random 37.9 20.8 40.9 50.4 39.0 21.6 41.7 52.3 4.3 4.2 4.2 5.2
2 Herding [10] 38.1 22.5 41.0 49.3 39.0 23.2 41.6 50.4 4.3 2.6 4.3 7.1
3 Adaptive sampling [7] 38.5 22.7 41.4 49.9 39.4 23.5 42.1 51.2 3.9 2.3 3.8 6.3
4 Distribution-preserving calibration (ours) 40.1 23.2 43.2 52.1 41.8 24.5 44.7 54.6 1.5 1.3 1.2 2.9

Table S6. Supplementary to Table 2 (main paper). Ablation results (%) for different exemplar replay strategies, using Deformable
DETR [12] on COCO 2017 in the 70 + 10 setting. “Herding” and “adaptive sampling” are from [10] and [7], respectively.

Activate the environment as follows,

1 conda activate cl_detr

Install PyTorch and torchvision. For example, for CUDA
version is 9.2, install PyTorch and torchvision as follows,

1 conda install pytorch=1.5.1 torchvision=0.6.1
cudatoolkit=9.2 -c pytorch

We install other requirements as follows,

1 pip install -r requirements.txt

Finally, we compile the CUDA operators as follows,

1 cd ./models/ops
2 sh ./make.sh
3 # unit test (should see all checking is True)
4 python test.py

Running experiments. First, please download COCO
2017 [6], and set up the dataset as in Deformable
DETR [12].

The following command runs the experiments:

1 GPUS_PER_NODE=4 ./tools/run_dist_launch.sh 4 ./
configs/r50_deformable_detr.sh

Settings can be changed in “main.py”.



Figure S1. Supplementary to Section 4.2 (main paper). Visualizations of the one-to-one matching between the merged bounding boxes and
new model predictions (yellow) on COCO 2017 using the 70 + 10 setting. The merged bounding boxes include the old category pseudo
(blue) and new category ground-truth (green) bounding boxes. Our method ensures the old category pseudo and new category ground-truth
bounding boxes are merged successfully.



References
[1] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Ja-

son Weston. Curriculum learning. In ICML, pages 41–48,
2009. 1

[2] Tao Feng, Mang Wang, and Hangjie Yuan. Overcoming
catastrophic forgetting in incremental object detection via
elastic response distillation. In CVPR, pages 9427–9436,
2022. 1, 2

[3] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and
Dahua Lin. Learning a unified classifier incrementally via
rebalancing. In CVPR, pages 831–839, 2019. 1

[4] Dawei Li, Serafettin Tasci, Shalini Ghosh, Jingwen Zhu,
Junting Zhang, and Larry P. Heck. RILOD: near real-
time incremental learning for object detection at the edge.
In Songqing Chen, Ryokichi Onishi, Ganesh Anantha-
narayanan, and Qun Li, editors, SEC, pages 113–126, 2019.
1, 2

[5] Zhizhong Li and Derek Hoiem. Learning without forgetting.
TPAMI, 40(12):2935–2947, 2018. 1, 2

[6] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, pages 740–755, 2014. 1, 3

[7] Xialei Liu, Hao Yang, Avinash Ravichandran, Rahul
Bhotika, and Stefano Soatto. Multi-task incremental learn-
ing for object detection. arXiv preprint arXiv:2002.05347,
2020. 3

[8] Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and
Qianru Sun. Mnemonics training: Multi-class incremental
learning without forgetting. In CVPR, pages 12245–12254,
2020. 1

[9] Can Peng, Kun Zhao, Sam Maksoud, Meng Li, and Brian C.
Lovell. SID: incremental learning for anchor-free object
detection via selective and inter-related distillation. CVIU,
210:103229, 2021. 1, 2

[10] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. iCaRL: Incremental classi-
fier and representation learning. In CVPR, pages 5533–5542,
2017. 1, 2, 3

[11] Dongbao Yang, Yu Zhou, Aoting Zhang, Xurui Sun, Dayan
Wu, Weiping Wang, and Qixiang Ye. Multi-view correlation
distillation for incremental object detection. Pattern Recog-
nition, 131:108863, 2022. 2

[12] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable DETR: deformable transformers
for end-to-end object detection. In ICLR, 2021. 2, 3


