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A1. Synthetic Dataset Construction
This section contains more details on how we construct

our Near-Developable Dataset. For a given sampled subset
of shape primitives (from cube, cone, cylinder tetrahedron,
sphere with replacement) normalized to the unit sphere, we
loop through each shape primitive and sample a random
number of SimpleDeform operations from Blender [8]. The
four types of deformations available are [TWIST, BEND,
TAPER, STRETCH]. For each deformation operation, we
sample a random angle between -0.5 and 0.5 and a random
factor quantity from -0.8 to 0.8. Following deformations,
we also sample a random axis through the origin and angle
and apply a rotation. Finally, we apply a random translation
by sampling between -0.3 and 0.3 for each axis. Follow-
ing the CSG union operation using PyMesh, we apply a 3D
augmentation to the resulting shape which involves sam-
pling 1/3 of the vertices of the shape, sliding them by up
to 5% in either direction along their normal, and applying a
Laplacian Smoothing operation.

We maintain correspondences between the ground truth
segmentations of each primitive and the final CSG shape.
We use this correspondence to map each ground truth seg-
mentation to a segmentation of the CSG shape. There is
no guarantee this mapped segmentation is contiguous due
to the CSG, so we identify all connected components of the
segmentation. We parameterize each connected component
separately using SLIM and compute the resulting isomet-
ric and conformal distortion DI , DC . If both DI and DC

are under our threshold of 0.05, then we sample faces from
within the segmentation and save them along with the new
ground truth segmentation label to generate our labelled
data. The full algorithm is shown in Algorithm 1.

A2. Proof of Theorem 1
Theorem 1 Let F̄ ⇢ F be a subset of triangles of the mesh,
which comprises one connected component. Let W be non-
negative weights assigned to the triangles s.t. the weights
of F̄ are non-zero. Let UW be the minimizer of Eq. (3) w.r.t
W . Then UW , restricted to F̄, is a well-defined, continuous
function of W . Furthermore, if the non-zero weights of W
are all equal to 1, then UW restricted to F̄ is exactly equal
to the (non-weighted) LSCM parameterization of F̄.

Proof. LSCM’s minimizer is uniquely defined up to a
global scaling and rotation which can be chosen by fixing
two vertices. Thus, WLOG, we pin two vertices of F̄ to
two corners of the unit grid. Then, the LSCM minimization
problem over F̄ has a unique solution, as proved in [36]. As-
sume we satisfy the theorem’s assumption and all the non-

zero weights of W are equal to 1 and are within F̄. Then,
for any parameterization U and its restriction to F̄, denoted
U|F̄, it holds that
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||At � S(At)||2 = ELSCM(U|F̄),

namely any minimizer UW of EwLSCM w.r.t the weights W ,
restricted to F̄, is the unique minimizer of LSCM of F̄.

Furthermore, UW |F̄ is a minimizer of a strictly-convex
quadratic energy Eq. (3), and hence is the solution of a lin-
ear equation, i.e., UW is the root of a linear polynomial with
coefficients which are linear combinations of W . Since W
is non-zero for F̄, UW restricted to F̄ is well-defined. Since
polynomial roots are continuous in their coefficients, UW

restricted to F̄ is a well-defined, continuous function of W .
⇤

A3. %D�
I with Changing � and Cost Thresh-

olds
We compare results on the metric % D�

I on all 3 datasets
for values of � from 0.01 to 0.1 in Fig. A1. “DCharts
v1” refers to DCharts with the default parameters from the
main paper.“DCharts v2” and “DCharts v3” refer to ver-
sions of DCharts with the cost threshold set to 0.1 and 0.3,
respectively. For the LogMap baseline, we set the distor-
tion threshold cutoff used for the segmentation heuristic to
be equal to �. We mark � = 0.05 with a red line, which is
the threshold we report in our main paper.

A4. Postprocessing, Selection Stability, and
Timing

DA Wand produces compact segmentation results which
are disk topology and near-disk topology. In order to guar-
antee a disk topology segmentation, we apply a floodfill
procedure which takes the largest contiguous subset of the
segmented region starting from the selection point. We fol-
low up with a graphcuts procedure to smooth out poten-
tial jagged edges along the segmentation boundary, which
is a standard procedure in mesh segmentation. We visualize
these steps in Fig. A2.

DA Wand also produces highly stable selections on mod-
els with sharp feature curves and clear developable regions.
Note how in Fig. A3, even when the selection point is on
the boundary of the feature curve, our method is able to ro-
bustly segment the same developable patch bounded by the
feature curve.



Figure A1. %DI metric with sliding � values. “DCharts v1”
refers to DCharts with the default parameters from the main pa-
per.“DCharts v2” and “DCharts v3” refer to versions of DCharts
with the cost threshold set to 0.1 and 0.3, respectively. The red
line marks � = 0.05, which is the threshold we report in the main
paper.

Figure A2. An example of our method’s raw prediction and the
subsequent effects of the post-processing steps.

Figure A3. DA Wand is highly stable on selections near sharp
feature boundaries which border a developable patch.

Figure A4. Our method produces segmentations in roughly linear
time with respect to the # edges of the model.

Our network architecture builds on MeshCNN, which is
a fully convolutional U-Net, implying O(n) time complexity
with respect to the input size, in this case the number of
edges of the mesh. We show this roughly linear complexity
in Fig. A4, where we are able to segment models with 1
million edges in around 10 seconds on a RTX2080 gpu.

A5. Additional Qualitative Comparisons
We show qualitative comparisons between DA Wand and

the LogMap and DCharts baseline methods in Fig. A5. Due
to the strict distortion threshold and the logarithmic maps’
sensitivity to noisy geometry, the LogMap segmentations
are low distortion but conservative. On the other hand,



DCharts will generally produce large segmentations, but is
highly unreliable on natural shapes or shapes with noisy ge-
ometry.

We also show qualitative comparisons of the ground
truth and DA Wand predictions over the synthetic dataset
in Fig. A6. Note that in most cases, the ground truth pre-
dictions are constrained to the smallest bounding plane or
cylinder of the selection point, whereas our method can
segment far beyond nearby feature curves to achieve much
larger local parameterizations with little to no cost in distor-
tion.

A6. Parameterization Benchmark: Artist
Global Segmentations

We show a few examples of the artist global segmenta-
tions which contain our selection points from the Parame-
terization Benchmark Dataset in Fig. A7. These segmenta-
tions were intended for global UV parameterization, which
involves different priors from local parameterization, as ex-
plained in Sec. 2. From Fig. A7 it is clear that our segmen-
tations are preferable in the context of local texturing or de-
caling, as we achieve large segmentations with little to no
tradeoff in terms of parameterization distortion.

Algorithm 1 Near-Developable Shape Generation
procedure DEFORM(M , n)

for i in range(n) do
✓  Unif(�0.5, 0.5)
↵ Unif(�0.8, 0.8)
method = randomChoice([’TWIST’, ’BEND’,

’TAPER’, ’STRETCH’])
M  blenderSimpleDeform(method, ✓,↵)

end for
end procedure
procedure RANDOMROTATION(M )

v  Unif(0, 1, size = 3)
✓  Unif(0, 2⇡)
rotate(M , v, ✓) . rotate m about axis v by ✓

end procedure
procedure RANDOMTRANSLATION(M )

M.vertices Unif(�0.3, 0.3, size = 3)
end procedure
procedure AUGMENT(M )

vlen len(M.vertices)
vi randomChoice(range(vlen), size=vlen/3)
M.vertices[vi]  M.vertices[vi] +

M.vertexnormals[vi] ⇤ Unif(0, 0.05, size=length(vi))
LaplacianSmooth(M )

end procedure
procedure GENERATESHAPE(primitives, segs)

for M in primitives do
deform(M , randomChoice(range(3,10)))
randomRotation(M )
randomTranslation(M )

end for
M 0, correspondences csgUnion(primitives)
M 0  augment(M 0)
for M , mmap, seg in zip(primitives, correspon-

dences, segs) do
mappedseg mmap(seg)
mappedseg collect all connected mapped seg-

mentation components
for mseg in mappedseg do

uv  SLIM(mseg)
ss getSingularValues(uv)
dI  mean((max(ss[:, 0], 1/ss[:, 1])� 1)2)
dC  mean((ss[:, 0]� ss[:, 1]))2)
if dI  0.05 and dC  0.05 then

Sample initial selection faces f in mseg,
and save inputs (M 0, f ) and corresponding ground truth
label mseg

end if
end for

end for
end procedure
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Figure A5. Sample segmentations between DA Wand, DCharts, and the LogMap baselines.



Figure A6. Sample segmentations between DA Wand and the ground truth over the synthetic test set. We report the percentage of triangles
under isometric distortion 0.05 %DI in bold.
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Figure A7. Sample segmentations between the Parameterization Benchmark labels (Global Segmentation), DA Wand, DCharts, and the
LogMap baselines.


