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Abstract

In this supplementary file, we provide more support-
ing materials. First, we introduce the designing philoso-
phy of DegAE. Second, we present the experimental results
on low-cost tasks, including Gaussian denoise and super-
resolution. Third, we conduct ablation studies on the pre-
training losses. Then, we describe more implementation de-
tails, such as the architecture of the decoder, training strat-
egy, etc. Last, more visual results are presented.

1. The Philosophy of DegAE
The purpose of low-level vision is to produce natural

clean images. To achieve this, the model is expected to
learn a good and general representation of natural images.
However, previous literatures have shown that deep net-
works tend to overfit the training degradation rather than
actually learn the distribution of natural images [12]. In the
design of DegAE, the encoder extract features from vari-
ous degraded input images and the decoder tries to transfer
another degradation to the input degraded images. There-
fore, our method implicitly has two stages: restore the de-
graded image to a clean image, and then add new degra-
dation to the clean image. This suggests that the encoder
has to project all degraded images into a unified distribu-
tion of clean images. To verify this, we train the encoder-
decoder structure of DegAE with different objectives, i.e.,
SR, denoise, multi-task restoration (MTR) and DegAE. To
be specific, SR refers to ×4 classical super-resolution; de-
noise refers to Gaussian denoise with noise level [0, 50];
multi-degradation restoration includes various degradation
settings mentioned in [22]; DegAE means our proposed
pretext task. Then, following [13], we convert and visual-
ize the encoder’s output feature distributions of different in-
put degradations. The PIES dataset is borrowed from [13],
which includes patch-based images with various degrada-
tions. Each degradation contains 800 images. As shown in
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Fig. 1, the encoder of DegAE successfully transfer various
degradations into similar distributions, while other training
schemes will cause large difference in the encoder’s distri-
bution. This verifies our hypothesis that the encoder has
successfully pull various degradations into a unified clean
image space. Interestingly, we find that the distributions
of MTR will become unanimous until the last output lay-
ers. The encoder’s output distributions are still separated
for different degradations. On the contrary, our DegAE can
effectively project different degradations into a unified dis-
tribution at the encoder stage.

MTR DegAE

SR Denoise

Figure 1. Feature distributions of encoder with different training
schemes. The encoder of DegAE can successfully transfer variosu
degradaed input into a unanimous distribution.

2. Experiment on Low-cost Tasks
In addition with high-cost tasks, we also perform experi-

ments on several low-cost tasks, like image super-resolution
and Gaussian denoise.

Image Super-resolution. We also conduct finetuning
on super-resolution (SR), which is a classical low-level vi-
sion task. Classical SR task [4, 30] assumes that the im-
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Figure 2. Example results of DegAE pretraining.

age downsampling process is modeled by bicubic down-
sampling. Different from previous downstream tasks, the
training pairs of classical SR can be synthesized on-the-
fly, thus the amount of data can be regarded as unlim-
ited. We consider the ×4 SR task and adopt DF2K dataset
(DIV2K [1]+Flickr2K [21]) to synthesize the training pairs.
The trained models are evalated on Set5 [2], Set14 [26],
BSDS100 [16] and Urban100 [8] datasets. For reference,
we also report the performance of several state-of-the-art
methods: RCAN [30], SAN [3], HAN [19], NLSA [18].
We calculate the PSNR and SSIM scores on the Y channel
in YCbCr color space.

From Tab. 1, it can be seen that pretraining does not
bring much improvement on SR task. For example, SwinIR
only gains 0.03dB improvement at most on Set5 and Ur-
ban100 dataset. The performance gain of Uformer and
Restormer is also marginal (less than 0.1dB). This is reason-
able since the image pairs of SR can be obtained infinitely
during training and the degradation process (bicubic down-
sampling) is fixed as well. Unlimited training data weakens
the significance of pretraining, as sufficient data can facili-
tate full training of the model.

Image Gaussian Denoising. We further perform denois-
ing experiments with additive white Gaussian noise. Sim-
ilar to SR task, the Gaussian noise is synthesized on-the-
fly during training. For better universality, we train SwinIR
model with noise level sampled from a wide range of [0, 50],
rather than training on a certain single noise level. Besides,
we also retrain several baseline models for reference, in-
cluding DnCNN [28], IRCNN [29], DRUNet [27] and mod-

ified SRResNet [23]. We then test the trained models on
Kodak24 [5], CBSD68 [17] and Urban100 [8] datasets with
different noise levels.

As shown in Tab. 2, with DegAE pretraining, SwinIR
achieves the largest improvement of 0.82dB on CBSD68
dataset with noise level 15. However, on Kodak24 and Ur-
ban100 datasets, the improvement is relatively small. Espe-
cially for Kodak24 set, the improvement is very marginal.
Note again, we can synthesize the Gaussian noise data dur-
ing training process almost without cost. For such tasks
with unlimited amounts of data, as long as the original back-
ground images are sufficient, the model can already learn
good enough representations without the additional power
of pretraining.

3. Influence of Pretraining Losses

In training DegAE, we employ four loss functions,
namely content reconstruction loss Lcontent, perceptual
loss Lper, adversarial loss Ladv , and embedding loss
Lembed. These losses are commonly utilized in GAN-based
superresolution (SR) methods. Our ablation studies reveal
that the GAN loss and perceptual loss are crucial for effec-
tively learning complex degradations, while the content re-
construction loss helps to preserve image contents. As illus-
trated in Fig. 3, when solely Lcontent loss (L1 loss) is used,
the model fails to generate any noise degradation in the out-
put images. In the case of only adopting adversarial loss
Ladv , the model suffers from model collapse, which pre-
vents it from generating normal images. Similarly, if solely
Lper loss is used, the produced noise degradation lacks fi-



Set5 Set14 BSDS100 Urban100
Method PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM
RCAN [30] 32.63 0.900 28.87 0.789 27.77 0.744 26.82 0.809
SAN [3] 32.64 0.900 28.92 0.789 27.78 0.744 26.79 0.807
HAN [19] 32.64 0.900 28.90 0.789 27.80 0.744 26.85 0.809
NLSA [18] 32.59 0.900 28.87 0.789 27.78 0.744 26.96 0.811
Uformer 31.84 0.894 28.47 0.783 27.40 0.737 26.32 0.795
DegAE (Uformer) 31.88 0.894 28.50 0.784 27.42 0.737 26.32 0.795
Restormer 32.57 0.900 28.93 0.789 27.79 0.743 26.79 0.805
DegAE (Restormer) 32.62 0.900 28.99 0.790 27.80 0.744 26.82 0.806
SwinIR 32.73 0.902 29.07 0.793 27.88 0.747 27.32 0.821
DegAE (SwinIR) 32.76 0.902 29.08 0.793 27.89 0.747 27.35 0.822

Table 1. Image super-resolution results.

Kodak24 CBSD68 Urban100
Method σ=15 σ=25 σ=15 σ=25 σ=15 σ=25
DnCNN [28] 31.24 27.19 30.26 26.10 29.81 25.28
IRCNN [29] 31.37 27.33 30.37 26.25 29.93 25.44
SRResNet [23] 32.00 27.98 30.83 26.72 31.02 26.40
DRUNet [27] 32.18 28.13 30.72 26.48 31.17 26.53
SwinIR 32.13 28.20 30.03 26.48 31.30 26.74
DegAE (SwinIR) 32.18 28.30 30.56 26.80 31.42 26.85

Table 2. Image Gaussian denoising results (PSNR) on test
datasets.

delity and does not effectively transfer different levels of
blur degradation to the noise input. In summary, incorporat-
ing multiple loss functions is essential for successful train-
ing of the DegAE model.

4. Implementation Details
4.1. Details on Degradation Autoencoder

Detailed Structure of Decoder For pretraining, the de-
coder is a pure CNN architecture that contains four resid-
ual blocks [7]. For each residual block, a degradation in-
jection module is introduced to modulate the intermedi-
ate features. Specifically, the degradation injection mod-
ule accepts a degradation embedding and then outputs the
modulators–scaling α and shifting β parameters using two
independent fully connected layers for global feature mod-
ulation (GFM) [6]. The formulation of GFM is given by:

GFM(xi) = α ∗ xi + β, (1)

where xi ∈ RC×H×W is the intermediate feature map.
C, H and W are channels, height and width, respectively.
In order to generate noisy images, we also introduce ran-
dom noise map and the corresponding weighting param-
eter w that is learned during training. This noise injec-
tion is performed after global feature modulation: x̃i =
GFM(xi) + w ∗ η, where η ∼ N(0, 1).

The degradation embedding is produced by a degrada-
tion representor ϕ based on the given reference degraded
image ID2

ref with degradation D2. The degradation represen-
tor ϕ contains a pretrained SRGAN [10] model, three con-
volution layers with stride 2 for downsampling, one global
average pooling layer, and three FC+LeakyReLU [15] lay-
ers. The channel dimension of the degradation embedding
is 512. The extracted degradation embedding will be fed
into the GFM to modulate the intermediate features of the
decoder, which governs the generation of different degrada-
tions. In practice, we find this simple design works well,
especially for simulating blur and noise degradations. Nev-
ertheless, better design could be explored for further work.

The DegAE decoder is only used in the pretraining stage.
It will be replaced by a single convolution layer as the out-
put head during downstream finetuning. For super resolu-
tion, we additionally add some convolution layers and pix-
elshuffle [20] layers.
Details of Degradation Input. As for blur operation, we
use Gaussian kernels, generalized Gaussian kernels and
plateau-shaped kernels and their probabilities are 0.7, 0.15,
0.15, respectively. The kernel size is selected from 7, 9, ...21
randomly. For generalized Gaussian and plateau-shaped
kernels, the shape parameter β is sampled from [0.5, 4]
and [1, 2], respectively. The probability of sinc kernel is
set to 0.1. The Gaussian noises and Poisson noises are em-
ployed with probability 0.5. We set the noise sigma range
and Poisson noise scale to [1, 30] and [0.05, 3], respectively
The gray noise probability is set to 0.4. JPEG compression
quality factor is set to [30, 95]. The final sinc filter is applied
with a probability of 0.8.

4.2. Details on Finetuning Strategy

For finetuning, we replace the decoder with a single con-
volution layer. The kernel size is 3 × 3 and the output
channel is 3. The parameters of the backbone are initial-
ized from DegAE pretraining. The initial learning rate is
3e-4 and is cosine decayed to 1e-6. We randomly augment
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Figure 3. Effect of different losses. The imperfect cases are highlighted in red rectangles.



the training samples using the horizontal flipping and rotate
the images by 90◦, 180◦, and 270◦. For all downstream
tasks, we adopt L1 loss. For SwinIR [11] backbone, the in-
put patch size is 128 × 128 1. The Adam optimizer [9] is
adopted as the original SwinIR paper. For Uformer [24] and
Restormer [25] backbone, the input patch size is 256×256.
The AdamW [14] optimizer is adopted.

5. Additional Visual Results

5.1. Visual Results of Downstream Tasks

We provide more visual results of downstream tasks in
Fig. 4, including image dehaze, derain and motion deblur.

5.2. Effects of DegAE Pretraining-Finetuning

As shown in Fig. 6, 7, and 8, DegAE pretraining
can reduce the generated artifacts and help remove the
haze/rain/blur more thoroughly, compared to training from
scratch.

5.3. Visual Comparison with MAE

In Fig. 5, we show some visual examples of ViT, MAE,
FFA-Net, Uformer and DegAE on dehaze dataset. ViT-
based pure Transformer architecture is not friendly to low-
level vision tasks, due to the rough patch-splitting strat-
egy. The produced visual results contain much box arti-
facts. In addition, MAE pretraining does not bring effective
improvement. FFA-Net is a pure CNN-based model and
Uformer contains CNN pre-processing and post-processing
as well. Their results do not contain artifacts as ViT. This
implies that CNN structure has its unique advantages for
low-level vision tasks. Further, by adopting the proposed
DegAE pretraining scheme, Uformer achieve significant
improvement. This clearly shows the effectiveness of De-
gAE, which is tailored to low-level vision.
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Figure 4. Visual results of three low-level vision tasks. We choose three representative backbones (SwinIR, Uformer and Restormer) to
verify the effectiveness of DegAE pretraining, since different architectures have their preferences in handling different tasks.
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Figure 5. Visual comparison with ViT, MAE, FFA-Net, Uformer and DegAE.
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Laura Leal-Taixé and Stefan Roth, editors, Computer Vi-
sion – ECCV 2018 Workshops, pages 63–79, Cham, 2019.
Springer International Publishing. 2, 3

[24] Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang

Scratch DegAE

24.57dB/0.7325 25.92dB/0.7841

S
w

in
IR

R
es

to
rm

er

25.32dB/0.7518 30.17dB/0.9061

Motion Deblur

Figure 8. Visual comparison of training from scratch and DegAE
pretraining on motion deblur effects.

Zhou, Jianzhuang Liu, and Houqiang Li. Uformer: A general
u-shaped transformer for image restoration. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 17683–17693, 2022. 5

[25] Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang.
Restormer: Efficient transformer for high-resolution image
restoration. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5728–
5739, 2022. 5

[26] Roman Zeyde, Michael Elad, and Matan Protter. On sin-
gle image scale-up using sparse-representations. In Interna-
tional conference on curves and surfaces, pages 711–730.
Springer, 2010. 2

[27] Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc
Van Gool, and Radu Timofte. Plug-and-play image restora-
tion with deep denoiser prior. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021. 2, 3

[28] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and
Lei Zhang. Beyond a gaussian denoiser: Residual learning of
deep cnn for image denoising. IEEE transactions on image
processing, 26(7):3142–3155, 2017. 2, 3

[29] Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang.
Learning deep cnn denoiser prior for image restoration. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3929–3938, 2017. 2, 3

[30] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image super-resolution using very
deep residual channel attention networks. In Proceedings of
the European conference on computer vision (ECCV), pages
286–301, 2018. 1, 2, 3


	. The Philosophy of DegAE
	. Experiment on Low-cost Tasks
	. Influence of Pretraining Losses
	. Implementation Details
	. Details on Degradation Autoencoder
	. Details on Finetuning Strategy

	. Additional Visual Results
	. Visual Results of Downstream Tasks
	. Effects of DegAE Pretraining-Finetuning
	. Visual Comparison with MAE


