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1. Why perform affine transformation on
quaternion?

It seems straightforward to perform affine transformation
on the rotation matrix, however, we find that these methods
concentrate the distribution in an undesired way. The sim-
plest way is to left or right multiply a 3×3 invertible matrix
W to rotation matrix R, and then use SVD decomposition
or the Gram-Schmidt orthogonalization to project the re-
sult WR or RW into a rotation matrix, i.e. SVD(WR),
SVD(RW ), GS(WR), GS(RW ).

However, if we use SVD decomposition (SVD(WR)
or SVD(RW )) or right Gram-Schmith orthogonalization
(GS(RW ), it can be proved that it only functions as a ro-
tation and thus has poor expressivity. If we use left Gram-
Schmidt orthogonalization (GS(WR)), we concentrate the
distribution to 4 different modes where the relative angle
between each pair of them is fixed to be 180◦ as shown in
Figure 1, which is usually undesired.

The 4-modal distribution can be understood as multiply-
ing W to the first column and then normalizing it can be
interpreted as scaling S2 to an ellipsoid and then squeezing
it to make it concentrated similar to quaternion affine trans-
formation. Multiplying W to the second column and using
the Gram-Schmidt orthogonalization can be viewed as scal-
ing a circle S1 to an oval and then squeezing it to make it
concentrated. Those two operations both have the property
of antipodal symmetry similar to quaternion affine transfor-
mation. However, keeping antipodal symmetry is needed in
quaternion affine transformation as q and −q represent the
same rotation, while in rotation matrix affine transforma-
tion, if (c1, c2, c3) is one mode where ci is the i-th column
of the rotation matrix, then (−c1,−c2, c3), (−c1, c2,−c3)
and (c1,−c2,−c3) will also be the mode due to this sym-
metry.

One can also treat the first two or all three columns of the
rotation matrix as a vector and then perform affine transfor-
mation on it, but these methods usually lead to even more
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Figure 1. Illustration of rotation matrix affine transformation.
It can be shown that when the rotation matrix affine transformation
is performed by left multiplying 3 × 3 invertible matrix W to the
rotation matrix and then using the Gram-Schmidt orthogonaliza-
tion. The probability is concentrated to 4 different modes, which
usually leads to unsatisfactory performance.

modes and the inverse of those transformations are much
harder to solve.

On the contrary, as shown in Figure 5, the affine transfor-
mation on quaternion has elegant geometric interpretations
and it can concentrate the distribution to only one mode, so
we choose to perform affine transformation on quaternion.

Table 1 reports results of abaltion study of quaternion
affine transformation and rotation matrix affine transforma-
tion on ModelNet10-SO3 datasets. It shows that the over-
all performance of quaternion affine transformation is better
than rotation matrix affine transformation. Note that our av-
erage median error is higher because the result is highly af-
fected by bathtub category, whereas bathtub exhibits sym-
metry while there is only one ground truth annotation for
each image.

2. How to obtain the 4× 4 Invertible Matrix?

We present two methods to parameterize the invertible
matrix W in quaternion affine transformation. One is to out-
put an unconstrained matrix, and the other is to obtain the
matrix by LU decomposition W = PL(U + S), as in [3].
For this method, we follow [3] to construct P as a fixed per-
mutation matrix, L as a lower triangular matrix with ones
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avg. bathtub bed chair desk dresser tv n. stand sofa table toilet

Acc@15°

RSVD 0.724 0.430 0.861 0.888 0.613 0.716 0.790 0.577 0.888 0.522 0.952
LSVD 0.734 0.353 0.872 0.899 0.660 0.730 0.804 0.601 0.927 0.526 0.965
RSmith 0.717 0.400 0.841 0.866 0.622 0.710 0.792 0.588 0.882 0.524 0.951
LSmith 0.725 0.400 0.873 0.875 0.613 0.722 0.799 0.597 0.913 0.506 0.950
Ours 0.760 0.402 0.896 0.927 0.704 0.753 0.843 0.602 0.939 0.561 0.975

Acc@30°

RSVD 0.731 0.439 0.863 0.907 0.618 0.719 0.817 0.580 0.894 0.525 0.954
LSVD 0.750 0.371 0.880 0.926 0.678 0.742 0.841 0.615 0.934 0.535 0.972
RSmith 0.726 0.407 0.843 0.887 0.626 0.715 0.820 0.593 0.884 0.526 0.956
LSmith 0.738 0.411 0.880 0.900 0.632 0.729 0.826 0.605 0.920 0.516 0.959
Ours 0.774 0.419 0.904 0.946 0.722 0.766 0.868 0.617 0.948 0.567 0.982

Median
Error (◦)

RSVD 11.3 91.4 1.4 2.8 2.6 1.3 2.8 1.9 1.4 5.6 1.9
LSVD 12.2 93.0 1.7 3.1 3.2 1.8 3.0 2.8 1.7 8.9 2.3
RSmith 16.9 146.8 1.5 2.9 2.5 1.4 2.8 1.8 1.4 5.9 2.0
LSmith 13.5 106.5 1.5 3.1 2.9 1.5 2.8 2.2 1.5 11.3 2.2
Ours 14.6 124.8 1.5 2.8 2.7 1.5 2.6 2.4 1.5 3.9 2.0

Table 1. Ablation of different affine transformation on ModelNet10-SO3 dataset. We adopt 15◦ accuaracy, 30◦ accuaracy and median
error as the evaluation metrics. We use uniform distribution in SO(3) as base distribution. The best performance is shown in bold and the
second best is with underlined.

on the diagonal, U as an upper triangular matrix with zeros
on the diagonal, and S as a diagonal matrix with positive
entries.

We conduct an ablation study on different strategies in
both unconditional and conditional experiments, and the
results are shown in Table 2. We find that 4 × 4 uncon-
strained matrix outperforms LU decomposition as shown in
the table. This phenomenon may result from the less ex-
pressivity of the construction by LU decomposition. Given
W = PL(U +S), the sign of the diagonal elements of S is
always positive, so it can only represent a subspace of 4×4
invertible matrix, which limits the expressivity. For exam-
ple, if P is fixed to be the identity matrix, the rotation matrix
diag(−1,−1, 1, 1) can’t be parameterized via this strategy.

Table 2. Abalations on parameterization strategies of the 4× 4
invertible matrix. We report results on synthetic datasets and
SYMSOL-I dataset with log-likelihood (↑) as the evaluation met-
ric. We also report results on ModelNet10-SO3 dataset and adpot
acc@15, acc@30 and error median as the evaluation metrics.

Synthetic datasets avg. peak cone cube line

Ours (unconstrained M ) 7.23 13.93 8.99 4.81 1.38
Ours (LU) 7.23 13.92 8.99 4.81 1.38
SYMSOL I avg. cone cube cyl. ico. tet.

Ours (unconstrained M) 10.38 10.05 11.64 9.54 8.26 12.43
Ours (LU) 8.57 9.95 8.60 9.38 3.94 10.99

ModelNet10-SO3 acc@15↑ acc@30↑ Median Error↓

Ours (unconstrained M ) 0.760 0.774 14.6
Ours (LU) 0.727 0.738 16.7
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Figure 2. Abalations on
√
2
2

trick on Cube dataset. We plot
results of log likelihood with different blocks and choice of struc-
ture. Curve[1] stands for single Mobius transformation without
trick, [2] for single Mobius transformation with trick, [3] for 64-
combination Mobius transformation with trick, [4] for single Mo-
bius transformation without trick with affine transformation and
[5] for 64-combination Mobius transformation with trick with
affine transformation.

3. Ablation
√
2
2

trick

We present a
√
2
2 trick to alleviate discontinuity encoun-

tered in linear combination of Mobius transformations. We
have to confess that the expressivity of single Mobius trans-
formation are reduced due to restriction of ∥ω∥, however,
as it enables linear combination of Mobius transformations,
the general expressivity are gained.

Without
√
2
2 trick, we can not compute the inverse pro-

cess of linear combination of Mobius transformations due
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to the ambiguity of Mobius combination. So we have to
compare the gain from using linear combination and the
cost of this

√
2
2 trick.

We conduct ablation study of
√
2
2 trick on Cube dataset in

Fig. 2. Seen from curves [1-2], the introduction of
√
2
2 trick

indeed limits the performance; however, from [3] vs. [1]
and [5] vs. [4], the accommodation of linear combination
in return provides larger expressivity.

4. More Discussions on using other Normaliz-
ing Flows on SO(3)

4.1. ReLie

ReLie [2] performs normalizing flows on the Lie alge-
bra of Lie groups, where for rotations in SO(3), the Lie
algebra is the axis-angle representation (θe) in R3. ReLie
applies normalizing flows in Euclidean space and then maps
the Euclidean samples back to SO(3) space through the ex-
ponential map. Noticing that the axis-angle representation
periodically covers SO(3) space, i.e., (θ + 2iπ)e, i ∈ Z
represent the same rotation, ReLie restricts the output of
the Euclidean normalizing flows in a sphere with the ra-
dius r by an r · tanh(·) operation to resolve the infinity-
to-one issue. However, ReLie still exhibits several draw-
backs. Firstly, even if limited in a sphere with the radius
of π, axis-angle representation is not a diffeomorphism to
SO(3) [11], thus the normalizing flows cannot build dif-
feomorphic mappings between Lie algebra and Lie group
and suffer from discontinuous rotation representation. Sec-
ondly, with the non-linear tanh(·) operation, at the inverse
stage, tanh-1(·) can yields infinitely large values, resulting
in numerical instability (see Figure 3). Note that this issue
can not be solved by replacing tanh(·) by other functions
or varying the value r, since a non-linear mapping function
is always needed to restrict R3 into a sphere.

In our experiment, ReLie fails to fit the peak distribu-
tion (see Table 1 in the main paper). This is because the
normalizing flows learn to push mostly all the points to the
peak, and in the inverse process, points that are not close to
the peak are pushed back near to the surface of the r-sphere
in Lie algebra, which yields NAN in training and breaks the
process.

4.2. ProHMR

ProHMR [4] leverages 6D rotation representation and
considers the first two columns of the rotation matrix as a
6D Euclidean vector. Thus, it applies Euclidean normaliz-
ing flows on the 6D vectors and maps the samples back to
SO(3) by Gram-Schmidt orthogonalization. Without any
constraint, the infinity-to-one mapping clearly makes the
probability density of a given rotation intractable. This is
because a rotation in SO(3) corresponds to infinity points

Figure 3. Illustration of tanh(x) function (left) and tanh−1(x)
function (right). When |x| is close to 1, | tanh−1(x)| approaches
infinity.

in Euclidean space and the PDF of the rotation should be
the integration of all the corresponding Euclidean points.
Due to the unavailability of the probability densities, we do
not incorporate it as our baseline in experiments.

5. Application: Entropy Estimation of Arbi-
trary Distribution

One outstanding feature of our Normalizing Flows com-
pared to other probability inference methods on SO(3) (like
[8]) is its ability for efficient samples. [8] can only sample
by querying a large number of rotations and calculating the
probability density function. For highly peaked distribu-
tion, this method may fail as it is hard to have queries that
are enough close to the peak such that the probability is not
close to zero. However, we can sample by transforming z
sampled from a base distribution through our flows. Effi-
cient sampling makes it possible to estimate properties of
data x, for example, entropy can be estimated via Monte
Carlo:

S = E[log p(x)]. (1)

In this experiment, we compare our rotation NFs with
Implicit-PDF in approximating the entropy of the target dis-
tributions. In order to obtain the ground truth entropy for
evaluation, we adopt multiple matrix Fisher distributions
(whose entropy can be analytically computed) with differ-
ent parameters as the target distributions. We sample 600k
points from each target distribution as the training data and
evaluate both our method and Implicit-PDF by randomly
sampling N (N=5, 10, 100, 1k, 10k) points from the learned
distributions. The results are shown in Figure 4. We can see
that even when the sampling size is small, our rotation nor-
malizing flows still achieve accurate estimation of entropy
for different target distributions, while Implicit PDF fails to
do so.
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Figure 4. Results of entropy estimation for three different target distributions. We compare the mean and variance of estimated entropy
after 100 times of sampling. We use uniform distribution as base distribution. Note that the horizontal axis is in log scale.

6. Calculations of Our Normalizing Flows
6.1. Determinate of Jacobian

Mobius Transformation The forward pass of Mobius
transformation is defined as follows:

c′ = fω(c) =
1− ∥ω∥2

∥c− ω∥2
(c− ω)− ω. (2)

Where c, c′ are vectors ∈ S2, ω is a point ∈ R3 that sat-
isfies ∥ω∥ <

√
2
2 .The Jacobian matrix is given by partial

derivatives of c′ with respect to c,

J =
dc′

dc
=

1− ∥ω∥2

∥c− ω∥2
(I − 2

(c− ω)T (c− ω)

∥c− ω∥2
) (3)

where I is the 3×3 identity matrix.
In our implementation, the Mobius transformation is a

one-degree-of-freedom mapping, which maps unit vectors
lying in the plane vertical to the unchanged condition col-
umn to unit vectors in the same plane. As any three-
dimensional vector c in the plane can be parameterized by
an angle θ to reference vector c2 where c2 and c3 are one
pair of the orthogonal basis of the plane.

c = cos θc2 + sin θc3 (4)
c′ = cos θ′c2 + sin θ′c3 (5)

Via a change of variable formula, the determinant of Ja-
cobian can be calculated as:

dθ′

dθ
=

dθ′

dc′
dc′

dθ
(6)

Given that c, c′, c2, c3 are unit vectors, the absolute value of
determinant of Jacobian is thus calculated as:

|det J | = |dθ
′

dθ
| = ∥dc

′

dθ
∥ (7)

Where dc′

dθ are given by:

dc′

dθ
=

dc′

dc

dc

dθ
(8)

dc

dθ
= − sin θc2 + cos θc3 (9)

Affine Transformation The forward of quaternion affine
transformation is given by:

q′ = g(q) =
Wq

∥Wq∥
(10)

The determinate of Jacobian of affine transformation is very
straightforward and is given by:

det J(q) =
detW

∥Wq∥4
(11)

6.2. Inverse

Mobius Transformation The inverse of Mobius transfor-
mation is implemented by connecting −c′ and parameters ω
with a straight line that intersects with SD at c. The explicit
expression for the inverse of Mobius transformation is given
as follows:

f−1
ω (c′) =

1− ∥ω∥2

∥c′ + ω∥2
(c′ + ω) + ω (12)

The forward process and the inverse process have the same
computational complexity.

However, as we utilize a linear combination, i.e. the
weighted sum of angles to improve the expressivity of Mo-
bius transformation, there is no analytical inverse for com-
bined Mobius transformation, so we use binary search al-
gorithms to find its inverse, as the combined angle θ′ are
constrained within(−π/2, π/2) and there’s no discontinuity
around the boundary ±π/2. The computational complex-
ity for inversing the Mobius transformation is O(log(1/ϵ),
where ϵ is the computational error.

Affine Transformation The inverse of affine transforma-
tion is implemented as:

g−1(q′) =
W−1q′

∥W−1q′∥
(13)

Where W is a 4× 4 invertible matrix and q′ is a quater-
nion. We find that the inverse and forward processes of
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Figure 5. Forward and inverse of scaling and normalization op-
eration in quaternion affine transformation. q are scaled to q̃
by multiplying s1, s2, s3, s4 on its coordinates and then normal-
ized to the unit sphere q′. Inversely, q′ are scaled to q̃′ by
1/s1, 1/s2, 1/s3, 1/s4 and normalized to q. ∆Oq̃′q′ and ∆Oqq̃
are similar triangles.

affine transformation have the same expression form while
the invertible matrix W in the forward path is replaced by
its inverse matrix W−1 in the inverse path. We attribute this
feature to the geometry of affine transformation.

Via SVD decomposition, the affine transformation is di-
vided into two types of operations: 1)rotation, 2) scaling
and normalization. The inverse of rotation operation R
takes place by multiplying R−1 which is straightforward,
whereas the inverse of scaling and normalization is also im-
plemented by taking the inverse of S which sounds non-
trivial.

The feature is caused by a geometry coincidence, as
illustrated in Figure 5. q are scaled to q̃ by multiply-
ing s1, s2, s3, s4 on its coordinates and then normalized
to the unit sphere q′. Inversely, q′ are scaled to q̃′ by
1/s1, 1/s2, 1/s3, 1/s4 and normalized to points intersects
with S3. ∆Oq̃′q′ and ∆Oqq̃ are similar triangles as:

Oq̃′

Oq
=

Oq′

Oq̃
=

q̃′q′

qq̃
(14)

As O,q′, q̃ are on the same line and ∠q̃′Oq′ = ∠qOq̃ due
to the property of similar triangles, O, q̃′,q are on the same
line, thus normalized points q̃′ are q, which is the inverse
of affine transformation.

7. ModelNet10-SO(3) and Pascal3D+ detailed
results

Table 3 and Table 4 show per-category metrics for
ModelNet10-SO(3) and Pascal3D+ dataset respectively.
Note that our method achieves significantly lower median
errors in experiments on ModelNet10-SO3 in all of the
categories except the batutub category, where batutub im-
ages are well-known to exhibit severe symmetry and all the
methods have unreasonably poor performance.

8. Analysis of Evaluation Methods
8.1. Log Likelihood Evaluation

In case of main experiments (rotation distribution fitting)
and SYMSOL I/II datasets, we exploit log likelihood av-
eraged over test data or test set annotations as evaluation
metrics. It is implemented by transforming data through the
flow to its base distribution and predicting log-likelihood.

8.2. Sample Generation

Sometimes pose estimation tasks require single-value
prediction. Estimated rotations are generated via flowing
samples from base distribution inversely and obtained a set
of samples following target distribution. We pick the sam-
ple with the highest probability likelihood as our single pre-
diction.

In SYMSOL I datasets, we present spread follow-
ing IPDF [8]. Given a complete set of equivalent
ground truth rotations, spread is defined as expectation
of angular deviation to any of the ground truth values:
ER∼p(R|x)[minR′∈{RGT } d(R,R′)], where x is the given
image and d(R,R′) is the relative angles between R and
R′. This measures how close the samples are to the ground
truth poses. It is calculated as the mean of the relative angle
between each of the generated samples and the ground truth
poses closest to it.

In ModelNet10-SO(3) and Pascal3D+ datasets, we cal-
culate the angular error of our single-value rotation predic-
tion with single ground truth value, and report error me-
dian, accuracy at threshold 15◦ (for ModelNet-SO(3) only),
30◦, i.e. Acc@15, Acc@30.

8.3. Ablations of other sample generation methods

We compare our inference method to those used in IPDF
[8], which is implemented via first evaluating a grid {Ri}
or samples randomly sampled on SO(3), and solving

R∗
x = argmaxR∈SO(3)p(R|x) (15)

to pick the single pose prediction (We called the method
PDF for short). The prediction can be made more accurate
with gradient ascent of Equation (15) (Grad for short). The
equivolumetric grids are generated first generating equal
area grids on the 2-sphere with HEALPix method, and
cover SO(3) with Hopf fibration by sampling equivolumet-
ric points on a circle with each point on the 2-sphere.

Table 5 shows that with few numbers of samples (∼
5), our method is capable of capturing accurate results
with little computational cost (∼ 1-2 minutes for evaluat-
ing the whole test sets). While for PDF and Grad, they re-
quire high-resolution grids to obtain high accuracy and the
computation cost is not affordable when evaluating a large
dataset.
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avg. bathtub bed chair desk dresser tv n. stand sofa table toilet

Acc@15°

Deng et al. [1] 0.562 0.140 0.788 0.800 0.345 0.563 0.708 0.279 0.733 0.440 0.832
Prokudin et al. [9] 0.456 0.114 0.822 0.662 0.023 0.406 0.704 0.187 0.590 0.108 0.946
Mohlin et al. [7] 0.693 0.322 0.882 0.881 0.536 0.682 0.790 0.516 0.919 0.446 0.957
IPDF [8] 0.719 0.392 0.877 0.874 0.615 0.687 0.799 0.567 0.914 0.523 0.945
Ours(Uni.) 0.760 0.402 0.896 0.927 0.704 0.753 0.843 0.602 0.939 0.561 0.975
Ours(Fisher) 0.744 0.439 0.890 0.909 0.638 0.715 0.810 0.585 0.938 0.535 0.978

Acc@30°

Deng et al. [1] 0.694 0.325 0.880 0.908 0.556 0.649 0.807 0.466 0.902 0.485 0.958
Prokudin et al. [9] 0.528 0.175 0.847 0.777 0.061 0.500 0.788 0.306 0.673 0.183 0.972
Mohlin et al. [7] 0.757 0.403 0.908 0.935 0.674 0.739 0.863 0.614 0.944 0.511 0.981
IPDF [8] 0.735 0.410 0.883 0.917 0.629 0.688 0.832 0.570 0.921 0.531 0.967
Ours(Uni.) 0.774 0.419 0.904 0.946 0.722 0.766 0.868 0.617 0.948 0.567 0.982
Ours(Fisher) 0.768 0.460 0.898 0.934 0.694 0.738 0.859 0.615 0.948 0.544 0.987

Median
Error (◦)

Deng et al. [1] 32.6 147.8 9.2 8.3 25.0 11.9 9.8 36.9 10.0 58.6 8.5
Prokudin et al. [9] 49.3 122.8 3.6 9.6 117.2 29.9 6.7 73.0 10.4 115.5 4.1
Mohlin et al. [7] 17.1 89.1 4.4 5.2 13.0 6.3 5.8 13.5 4.0 25.8 4.0
IPDF [8] 21.5 161.0 4.4 5.5 7.1 5.5 5.7 7.5 4.1 9.0 4.8
Ours(Uni.) 14.6 124.8 1.5 2.8 2.7 1.5 2.6 2.4 1.5 3.9 2.0
Ours(Fisher) 12.2 91.6 1.8 3.0 5.5 2.0 3.2 4.3 1.6 6.7 2.1

Table 3. Numerical results of rotation regression on ModelNet10-SO3 dataset. We adopt 15◦ accuaracy, 30◦ accuaracy and median
error as the evaluation metrics. The best performance is shown in bold and the second best is with underlined.

avg. aero bike boat bottle bus car chair table mbike sofa train tv

Acc@30°

Liao et al. [5] 0.819 0.82 0.77 0.55 0.93 0.95 0.94 0.85 0.61 0.80 0.95 0.83 0.82
Mohlin et al. [7] 0.825 0.90 0.85 0.57 0.94 0.95 0.96 0.78 0.62 0.87 0.85 0.77 0.84
Prokudin et al. [9] 0.838 0.89 0.83 0.46 0.96 0.93 0.90 0.80 0.76 0.90 0.90 0.82 0.91
Tulsiani & Malik [10] 0.808 0.81 0.77 0.59 0.93 0.98 0.89 0.80 0.62 0.88 0.82 0.80 0.80
Mahendran et al. [6] 0.859 0.87 0.81 0.64 0.96 0.97 0.95 0.92 0.67 0.85 0.97 0.82 0.88
IPDF [8] 0.837 0.81 0.85 0.56 0.93 0.95 0.94 0.87 0.78 0.85 0.88 0.78 0.86
Ours(Uni.) 0.827 0.83 0.78 0.56 0.95 0.96 0.93 0.87 0.62 0.85 0.90 0.81 0.86
Ours(Fisher) 0.863 0.89 0.89 0.55 0.96 0.98 0.95 0.94 0.67 0.91 0.95 0.82 0.85

Median
Error (◦)

Liao et al. [5] 13.0 13.0 16.4 29.1 10.3 4.8 6.8 11.6 12.0 17.1 12.3 8.6 14.3
Mohlin et al. [7] 11.5 10.1 15.6 24.3 7.8 3.3 5.3 13.5 12.5 12.9 13.8 7.4 11.7
Prokudin et al. [9] 12.2 9.7 15.5 45.6 5.4 2.9 4.5 13.1 12.6 11.8 9.1 4.3 12.0
Tulsiani & Malik [10] 13.6 13.8 17.7 21.3 12.9 5.8 9.1 14.8 15.2 14.7 13.7 8.7 15.4
Mahendran et al. [6] 10.1 8.5 14.8 20.5 7.0 3.1 5.1 9.3 11.3 14.2 10.2 5.6 11.7
IPDF [8] 10.3 10.8 12.9 23.4 8.8 3.4 5.3 10.0 7.3 13.6 9.5 6.4 12.3
Ours(Uni.) 10.2 8.9 15.2 24.9 6.9 2.9 4.3 8.7 10.7 12.8 9.3 6.3 11.3
Ours(Fisher) 9.9 9.6 12.4 22.7 7.5 3.1 4.8 9.2 8.6 13.5 8.6 6.7 11.6

Table 4. Numerical results of rotation regression on Pascal3D+ dataset. We adopt 30◦ accuaracy and median error as the evaluation
metrics. The best performance is shown in bold and the second best is with underlined.

9. Implementation Details

We use Adam as our optimizer with a learning rate of
1e-4.
Detailes of

√
2
2 trick In Mobius coupling layers, each ω is

predicted by first predicting ω′ by a [64, 64, 64, 64] multi-
layer perceptron (MLP), ReLU as activation function and a
residual connection between the first and the last layer with
the condition part as input, and then projecting ω′ to the
vertical plane of condition column via Gram-Smith process.
It is then reparameterized by ω = 0.7

1+∥ω∥ω to constrain it

within
√
2
2 sphere.

Unconditional Experiments we use 24 layers of blocks (24
Mobius + 24 Affine) with the combination of 64 Mobius

transformations at a batch size of 64 for 50k steps.
SYMSOL In experiments on SYMSOL, we add a condi-
tional Affine transformation at the beginning of our flow
(near the target distribution) and use 21 layers of blocks
(64-combination conditional Mobius coupling layers + un-
conditional affine transformation) at a batch size of 128 for
900k steps. Conditional features with dimension 512 are
captured by an ImageNet pre-trained ResNet50 following
settings in IPDF [8]. We trained a single model for SYM-
SOL I for 5 categories and trained a single for each category
in SYMSOL also following IPDF.
ModelNet10-SO3 For experiments on ModelNet10-SO3,
24 layers of blocks (64-combination conditional Mobius
coupling layers + conditional affine transformation) at a
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Table 5. Abalations on evaluation time. We report results on conditional rotation regression tasks of ModelNet10-SO3. We compare
the time required to generate estimated rotation via inversing the flow (Ours), inferringthe probability of a grid(PDF), gradient descent
of probility of a grid(Grad). The number of samples used in PDF and Grad corespond to the HEALPix-SO(3) grids of levels 2, 3 and 4
respectively.

Method Number of samples evaluation time(total)↓ evulation time(s)/iter↓ Acc@15◦ ↑ Acc@30◦ ↑ Med. (◦)↓
Ours 1 1.2 min 0.508 0.740 0.760 14.4
Ours 5 1.3 min 0.525 0.759 0.773 14.0
Ours 50 1.4 min 0.555 0.759 0.773 14.1
Ours 500 4.8 min 1.97 0.760 0.773 14.8
Ours 5k 0.7 h 16.8 0.760 0.774 14.6
PDF 4.6k 0.6 h 0.122 0.480 0.611 31.8
PDF 37k 1.4 h 0.289 0.699 0.745 18.2
PDF 295k 9.5 h 1.88 0.755 0.771 18.0
Grad 4.6k 2.2h 0.446 0.496 0.612 31.6
Grad 37k 3.0h 0.610 0.704 0.748 16.6
Grad 295k 11.0h 2.20 0.758 0.772 13.8

batch size of 128 for 250k steps are used. We also use
the strategy of learning rate decay and multiply the learn-
ing rate by 0.1 at 30 and 40 epochs. Conditional features
with dimension 2048 are captured by an ImageNet pre-
trained ResNet101 following settings in Mohlin et al. [7].
We train a single model for the whole dataset and use a 32-
dimensional positional embedding for 10 categories.
Pascal3D+ For Pascal3D+, 24 layers of blocks (64-
combination conditional Mobius coupling layers + condi-
tional affine transformation) at a batch size of 128 for 350k
steps are used. We also use the strategy of learning rate
decay and multiply the learning rate by 0.1 at 200k and
250k iterations when using uniform distribution as base dis-
tribution, 12 and 15 epochs when using pre-trained fisher
as base distribution respectively. Conditional features with
dimension 2048 are captured by an ImageNet pre-trained
ResNet101. We train a single model for the whole dataset
and use a 32-dimensional positional embedding for 10 cat-
egories.
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