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In this supplementary material, we provide more ex-
periment results to show the effectiveness of Shape-Aware
Zero-Shot semantic segmentation framework (SAZS). In
the following sections, we provide per-category evaluation
results. Then, more visualization results on PASCAL-5i and
COCO-20i are displayed. Lastly, more scatterplots of com-
pactness ( CO ) are presented.

Our code and checkpoints can be found at SAZS.

1. Per-Category Evaluation

Tab. 2, Tab. 3 demonstrate our per-category zero-shot se-
mantic mIoU results on COCO-20i [2] and PASCAL-5i [1]
respectively. The mIoU of SAZS demonstrates the superior
performance of our proposed network structure And we ob-
serve that some categories often appear as small regions,
like tie, or have a complicated internal structure, like per-
son. For these categories, textual feature guidance alone
cannot provide sufficient information for semantic parsing.
Hence baseline without shape-aware cannot segment under
self-supervision effectively. However, when using a SAZS
model, the mIoUs of these categories are better aligned with
shapes of objects than baseline, which verifies shape aware-
ness does help zero shot learning.

2. Speed and Complexity

We conduct experiments by analyzing the per-episode
inference time and floating point operations per second
(FLOPs) to demonstrate the complexity of the proposed
approach. Tab. 1 summarizes the results on COCO-20i

dataset. Compared with the baseline without fusion mod-
ule, the inference time of SAZS is slower but the perfor-
mance of SAZS is much better. Even though losses includ-
ing Lshape in our model do not introduce time cost during
inference, there is still room for optimization regarding in-
ference speed and model complexity, which is exactly the

Model Backbone mIoU time(s) FLOPS(G)

w/o fusion DRN 26.6 177.43 275.76
w/o fusion ViT-L 29.1 196.95 345.99

SAZS DRN 35.2 230.54 275.76
SAZS ViT-L 35.3 222.52 345.99

Table 1. More quantitative results on COCO-20i.

direction for our future exploration.

3. More Qualitative Results
In this section, we present additional qualitative results

on PASCAL-5i and COCO-20i using our model with ViT-
L backbone. Specifically, Fig. 2 shows the results on
PASCAL-5i. All categories are novel (unseen) in their cor-
responding fold. Taking into account the variety of im-
ages, we display all different categories of visualizations of
SAZS. As shown in Fig. 2, SAZS achieves precise seman-
tic parsing in all these scenes. For example, bicycle, din-
ingtable, and tvmonitor in Fig. 2 show the ability of SAZS
to discriminate target semantic objects from other objects
(distractors), such as person, dog, keyboard. Furthermore,
in Fig. 2, train, pottedplant, and tvmonitor, the model seg-
ments are precise even if the target instance contains more
than one.

The visualization of COCO-20i is shown in Fig. 3, with
both seen and unseen categories are displayed. We select
20 various scene and attribute labels with different seman-
tics and multiple objects. Facing a more noisy and com-
plex scene, SAZS is still able to recognize the novel( un-
seen ) categories that are small and complicated, for exam-
ple, broccoli, pottedplant and skis in Fig. 3. Particularly, in
the second image in lines 2 and 3 of Figure 1, where mul-
tiple species appear in the scene with multiple objects and
complex shapes, SAZS can accurately distinguish broccoli,
carrots and hot dogs with sharp object edge segmentation.

Considering the diversity of scenes, we believe SAZS
is precise enough for various applications including open
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scenario understanding and intelligent service robots.

4. More Scatter Analysis
Fig. 1 provides more scatterplots and the corresponding

Pearson analysis results on the pascal dataset. The coordi-
nates of the sample points in Fig. 1 represent the IoU result
and CO variance of the corresponding model, and they are
all negatively correlated. The results show that shape-aware
can increase the correlation between the per-category iou
results of our approaches and CO. For example, in the third
column of the Fig. 1, the Pearson correlation coefficient r
of SAZS is 0.13 higher than the baseline.
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Table 2. Per-category zero-shot semantic segmentation results on COCO-20i.
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Table 3. Per-category zero-shot semantic segmentation results on PASCAL-5i.
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Figure 1. More scatterplots on PASCAL-5i.
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Figure 2. More qualitative results on PASCAL-5i.
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Figure 3. More qualitative results on COCO-20i.
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