Supplementary Material of CLCAE

Hongyu Liu\(^1\) Yibing Song\(^2\)∗ Qifeng Chen\(^1\)∗

\(^1\)Hong Kong University of Science and Technology \(^2\)AI Institute, Fudan University

hliudq@cse.ust.hk yibingsong.cv@gmail.com

In this supplementary material, we first describe the limitation of our method. Then, we present more analysis about our solid foundation latent code \(w\). Meanwhile, we show more visual comparisons of the ClebA-HQ [7] and car datasets [13]. Finally, we demonstrate our method can achieve good performance in the horse dataset [13] in visually.

1. Limitation

Our method has good performance in both qualitative and quantitative, but it still has some limitations. Our method cannot reconstruct the jewelry well of some corner cases, and there are some artifacts during the editing process. We can replace the CNN with a more powerful network (i.e., Vision Transformer [3, 6]) to try to solve these problems.

2. More Analysis

To further prove that our method can predict robust latent code \(w\). We set our \(w\) as the initialization of PTI [9] to make comparisons. As shown in Fig. 1, the (a) is the original initialization results with \(w\) in PTI, and PTI finds this \(w\) with the optimization method [5]. The (b) is the reconstruction results with our \(w\), and the (b) outperformance than (a) in both identity and detail preservation which verifies the effectiveness of our method. The (c) is the original final prediction of PTI which sets the optimization \(w\) as the initialization, and we replace the optimization \(w\) with our \(w\) to get (d). By comparing (c) and (d), we can find a robust \(w\) that can improve the performance of PTI. Meanwhile, since the \(w\) in (d) is predicted with our encoder, we can speed PTI up to 134s for a single image, which is almost half of the time-consuming of the original PTI. Moreover, we provide more visual results of ablation study 2.

3. More visual comparisons

\(\mathcal{W}^+\) space. We show more visual comparisons between \(\mathcal{W}^+\) space methods (e4e [10], pSp [8], restyle\(_{e4e}\) [1] and StyleTransformer (ST) [4]) and our method in Fig. 3 and Fig. 4. Except for the e4e and our method, the other methods seem to have an overfitting phenomenon (i.e., the wrong white hair in the (c), (d), and (e) of the second person in Fig. 3) as discussed in our main paper. Meanwhile, our method has better reconstruction and editing performance simultaneously than other baselines (i.e., the "Age" and "Smile" editing results in Fig. 3 and the "Viewpoint" editing results in Fig. 4).

\(\mathcal{F}\) space. Fig. 5 and Fig. 6 shows more our comparisons to PTI [9], Hyper [2], HFGI [11], and FS [12] in the \(\mathcal{F}\) space. Our method can produce the image with better quality in both reconstruction and editing than other baselines (i.e., the "Pose" editing results in Fig. 5 and the "Grass" editing results in Fig. 6).

Moreover, we show more visual comparisons in Fig. 7.

4. More visual results

In addition to the face and car datasets, we also show more visual results on horse dataset [13] in Fig 8. We show the reconstruction results with our \(w\), \(w^+\) and \(w^+\), \(f\) in (a), (b) and (c) respectively. These visual results show that our solid foundation latent code \(w\) method can produce good-quality reconstruction images, and our \(w^+\) and \(f\) can further generate high-fidelity results with the solid \(w\).

References

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Trans-
Figure 1. Analysis of latent code w. We replace the initialization of PTI with our w as shown in (d). The original PTI’s result is (c). We can find that our solid latent code w can help the PTI perform better. Meanwhile, we illustrate the reconstruction results with optimization w and our w in (a) and (b), respectively.

Figure 2. Qualitative ablation

Figure 3. More visual comparisons on ClebA-HQ [7] dataset for W^+ space methods. Our method performance better in both reconstruction and editing. ↓ means a reduction of the manipulation attribute. ↑ means an increment of the manipulation attribute.

Figure 4. More visual comparisons on car dataset [13] for W^+ space methods. Our method performance better in both reconstruction and editing.
Figure 5. More visual comparisons on ClebA-HQ [7] dataset for \mathcal{F} space methods. Our method performance better in both reconstruction and editing. ↑ means an increment of the manipulation attribute.
Figure 6. More visual comparisons on car dataset [13] for \mathcal{F} space methods. Our method performance better in both reconstruction and editing.
Figure 7. More visual comparisons.
Figure 8. More visual results on horse dataset [13]. Good results can demonstrate the robustness of our method.