
Supplementary materials for paper:
Detecting Backdoors During the Inference Stage Based on Corruption

Robustness Consistency

1. Implementation Details
1.1. Baselines

Tab. 1 and Tab. 2 show the effectiveness of different at-
tacks on different backbones and datasets, indicating that all
the attacks are valid.

STRIP [1]. We re-implement STRIP following the of-
ficial codes 1 and a reference 2. For every input image, we
use 100 clean images from test data for superimposing.

FreqDetector [5]. We re-implement FreqDetector fol-
lowing the official codes 3. We choose PreActResNet18 as
the backbone of FreqDetector, and let all clean training im-
ages (for example, 50000 images in CIFAR10) serve as the
training data of FreqDetector. Following the paper and of-
ficial codes, we choose a random white block, random col-
ored block, Gaussian noise, random shadow, and random
blend as data augmentations.

2. Additional Experiments and Discussions
2.1. Thresholds

Since TeCo maps the input image x to a linearly sepa-
rable space and defenders make judgments by a threshold
γ, questions are how we can get this threshold and what is
the influence of threshold for our method. We investigate
these questions in three scenarios: (1) calculating appro-
priate thresholds from clean data (this seems to have bro-
ken the “no need for extra data” characteristic of TeCo,
we will discuss this later.). (2) setting single statistical and
static threshold for all potential attacks. (3) setting empiri-
cal threshold directly. We evaluate the effectiveness of TeCo
in these three scenarios. We use ACC as the evaluation met-
ric, which is calculated by:

ACC =
TP + TN

TP + TN + FP + FN
. (1)

ACC is enough to estimate the effectiveness because the
number of test clean images and the number of test trigger

1https://github.com/garrisongys/STRIP
2https : / / github . com / wanlunsec / Beatrix / tree /

master/defenses/STRIP
3https : / / github . com / YiZeng623 / frequency -

backdoor/tree/main/Sec4_Frequency_Detection

samples are very close according to Tab. 3.
Effectiveness on estimated threshold. In this setting,

we assume defenders can estimate thresholds based on a
small set of test clean samples. The estimated threshold is
calculated by:

γest =
1

E

E∑
e=1

Dev(Le), (2)

where E is the number of clean images used to estimate
thresholds, Dev is the deviation measurement method, and
Le is the recorded severity list for e-th clean image. Tab 5
shows the average performance of TeCo in different attacks,
datasets, and backbones. These results indicate that TeCo
can achieve high effectiveness with a small number of clean
data.

Effectiveness on statistical and static threshold. In
some real-world scenarios, the defenders can only set a sin-
gle prior threshold for all possible attacks. Thus, we in-
vestigate the performance of TeCo and two baselines in the
static thresholds settings, where only one threshold can be
set to detect all the backdoor attacks. The statistical and
static threshold is calculated by:

γ =
1

M

M∑
m=1

argmax
γ∈Γ

2× (precisionγ × recallγ)
(precisionγ + recallγ)

, (3)

where M is the number of backdoor attacks. Tab 6 shows
the accuracy of the detection methods. TeCo achieves the
best effectiveness in 50% settings and the best average ef-
fectiveness. These results suggest TeCo can be a practical
solution and have performance comparable with the SOTA
method which works on looser conditions.

Effectiveness on the empirical threshold. The most
simple way to set the thresholds is to choose common val-
ues directly. Tab. 7 shows the average performance of TeCo
in different attacks, datasets, and backbones when an em-
pirical threshold is given. The results suggest that by em-
pirically setting threshold = 1, TeCo can still get an average
ACC ≈ 0.79, which is a satisfying performance compared
with the results in Tab. 5. Since the standard deviation is
always larger than or equal to 0, it is easy to choose 1 as the
threshold without estimating on clean data.

1

https://github.com/garrisongys/STRIP
https://github.com/wanlunsec/Beatrix/tree/master/defenses/STRIP
https://github.com/wanlunsec/Beatrix/tree/master/defenses/STRIP
https://github.com/YiZeng623/frequency-backdoor/tree/main/Sec4_Frequency_Detection
https://github.com/YiZeng623/frequency-backdoor/tree/main/Sec4_Frequency_Detection


Dataset
Attack→ Badnets Blended LF Input-aware Wanet LIRA SSBA

Backbone↓ ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

CIFAR10
PreActResNet18 91.53 95.02 93.09 99.71 92.86 98.88 90.33 94.50 90.37 91.23 89.94 100.00 92.70 97.19

MobileViT-xs 90.62 95.71 91.14 99.50 90.67 96.37 87.84 96.67 88.94 90.78 83.89 100.00 90.29 95.28

GTSRB
PreActResNet18 97.74 93.35 98.20 99.98 97.25 99.86 97.36 96.39 97.74 92.94 96.37 100.00 98.23 99.53

MobileViT-xs 97.52 94.48 97.49 99.98 97.82 98.35 96.53 97.21 95.44 94.77 93.97 100.00 97.65 98.72

CIFAR100
PreActResNet18 67.38 88.09 69.63 99.45 68.96 94.71 64.48 88.46 64.43 93.41 66.42 100.00 68.81 97.54

MobileViT-xs 59.62 89.39 61.95 99.52 61.36 95.45 55.63 92.38 59.24 75.81 52.98 100.00 60.80 96.87

Tiny-ImageNet
PreActResNet18 56.11 99.97 56.40 99.59 55.74 98.64 57.09 99.08 57.29 99.51 54.57 99.96 55.32 97.73

MobileViT-xs 47.61 99.99 48.08 99.90 48.41 97.18 55.91 99.67 55.38 99.18 51.00 99.95 48.24 97.27

ImageNet200
WideResNet101-2 71.06 99.76 71.75 99.28 - - 75.65 82.04 94.44 90.36 77.39 100.00 90.51 94.14

SwinT-Base 74.48 99.94 78.89 100.00 - - 84.92 99.91 77.04 94.83 82.88 100.00 97.50 86.22

GTSRB (all2all) PreActResNet18 97.84 91.88 98.54 95.72 98.16 96.56 97.25 85.78 98.88 98.82 96.64 96.59 97.88 95.43

Table 1. The effectiveness of backdoor attacks on different backbones and datasets. We use these backdoor-infected models to further
evaluate our method.

Attack Metric 1 2 3 4 5 6 7 8 9 10

Badnets
ASR 93.35 95.52 95.76 94.93 95.16 94.59 94.92 96.12 94.54 95.57
ACC 97.74 97.53 97.86 97.54 97.77 97.42 97.77 97.78 97.66 97.21

Input-aware
ASR 92.94 92.73 90.84 95.07 90.56 96.00 97.01 93.46 92.45 94.40
ACC 97.74 98.69 98.60 98.39 98.71 98.31 97.76 97.94 98.16 97.19

Wanet
ASR 96.39 95.65 92.56 89.37 90.89 93.41 99.33 96.62 97.27 98.17
ACC 97.36 97.36 97.48 98.65 97.81 98.57 98.13 97.47 97.13 96.94

Table 2. The effectiveness of backdoor attacks on different target
labels

Dataset #Classes Image Size Training Data
Test Data

Clean Images Trigger Samples

CIFAR10 10 3×32×32 50000 10000 9000
GTSRB 43 3×32×32 39209 12630 12570

CIFAR100 100 3×32×32 50000 10000 9900
Tiny-ImageNet 200 3×64×64 100000 10000 9950
ImageNet200 200 3×224×224 100000 10000 9950

Table 3. Datasets for evaluations

Statement of No Need for Extra Data
In our paper, we claim that the proposed method TeCo

is independent of extra clean data. However, someone may
get confused because theoretically TeCo still needs clean
data to get the most appropriate thresholds. We emphasize
TeCo’s “no need for extra data” characteristic from two as-
pects: On the one hand, compared with black-box TTSD
methods, TeCo is free of extra data in the linearly separa-
ble space mapping process, which is clearly different from
existing methods. For example, STRIP superimposes var-
ious clean images on the suspicious samples, and FreqDe-
tector needs clean data to serve as the training set of the
trigger sample detector. These methods cannot map the in-
put data into a linearly separable space without clean data.
On the other hand, other TTSD methods need clean data to
gain appropriate thresholds, which seems similar to TeCo.
However, TeCo is still different from them because accord-
ing to Tab. 5 and Tab. 7, we can directly set a threshold
for TeCo (for example, set γ = 1) without estimating on
clean data and enjoy similar performance compared with
estimated thresholds. Take Beatrix [3] as a counterexample,
Beatrix is a white-box TTSD method that needs clean data

to get appropriate thresholds. According to the paper, the
appropriate threshold of Beatrix on CIFAR10 is about 0.02,
however for GTSRB, the appropriate threshold is about 1.0,
which means the best thresholds of Beatrix among different
datasets are quite different, making it hard to set empirical
thresholds.

In a nutshell, for most TTSD methods, the need for extra
data is a necessary condition for their effectiveness. On the
contrary, extra clean data is neither sufficient nor necessary
for TeCo. And this is why we can claim TeCo has no need
for extra data.

2.2. Ablation Studies of Image Corruption Set

We investigate the influence of image corruption set by
dividing the involved 15 image corruptions into 4 groups,
as shown in Tab. 10. Tab. 8 presents the performance of
TeCo based on different combinations of image corruption
groups. The results suggest that only relying on a single
type of corruption is not sufficient to get high effective-
ness, which is a misunderstanding in related works as we
mentioned in our paper. With more corruptions being con-
sidered, the performance of TeCo grows correspondingly,
indicating that the diversity of image corruptions is an im-
portant factor for gaining effectiveness and stability across
different attacks and datasets.

2.3. Ablation Studies of Variation Metrics

We investigate the influence of the deviation mea-
surement method Dev by introducing four more metrics:
Range 4, Mean Deviation 5, Coefficient of Variation 6, and
Quartile Deviation 7. Tab. 9 presents the performance of

4https : / / en . wikipedia . org / wiki / Range _
(statistics)

5https : / / en . wikipedia . org / wiki / Average _
absolute_deviation

6https://en.wikipedia.org/wiki/Coefficient_of_
variation

7https://en.wikipedia.org/wiki/Interquartile_
range

https://en.wikipedia.org/wiki/Range_(statistics)
https://en.wikipedia.org/wiki/Range_(statistics)
https://en.wikipedia.org/wiki/Average_absolute_deviation
https://en.wikipedia.org/wiki/Average_absolute_deviation
https://en.wikipedia.org/wiki/Coefficient_of_variation
https://en.wikipedia.org/wiki/Coefficient_of_variation
https://en.wikipedia.org/wiki/Interquartile_range
https://en.wikipedia.org/wiki/Interquartile_range


Dataset Model
Attack→ Badnets Blended LF Input-Aware Wanet LIRA SSBA AVG

Detection↓ FAR FRR BDR FAR FRR BDR FAR FRR BDR FAR FRR BDR FAR FRR BDR FAR FRR BDR FAR FRR BDR FAR FRR BDR

CIFAR10

PreActResNet18
STRIP 0.37 0.15 0.85 0.38 0.26 0.74 0.08 0.05 0.95 1.00 0.00 1.00 1.00 0.00 1.00 0.71 0.01 0.99 1.00 0.00 1.00 0.65 0.07 0.93

FreqDetector 0.02 0.08 0.92 0.07 0.12 0.88 0.10 0.29 0.71 0.01 0.01 0.99 0.38 0.52 0.48 0.10 0.23 0.77 0.10 0.26 0.74 0.11 0.22 0.78
Ours 0.11 0.05 0.95 0.10 0.00 1.00 0.11 0.01 0.99 0.10 0.06 0.95 0.10 0.09 0.91 0.12 0.01 0.99 0.20 0.03 0.97 0.12 0.04 0.97

MobileViT-xs
STRIP 0.44 0.16 0.84 0.76 0.17 0.83 0.14 0.14 0.86 1.00 0.00 1.00 1.00 0.00 1.00 0.86 0.01 1.00 1.00 0.00 1.00 0.74 0.07 0.93

FreqDetector 0.02 0.08 0.92 0.07 0.12 0.88 0.13 0.35 0.65 0.03 0.03 0.97 0.00 1.00 0.00 0.03 0.10 0.90 0.10 0.26 0.74 0.05 0.28 0.72
Ours 0.44 0.10 0.90 0.14 0.01 0.99 0.14 0.04 0.96 0.22 0.21 0.79 0.10 0.09 0.91 0.07 0.07 0.93 0.12 0.06 0.95 0.17 0.08 0.92

GTSRB

PreActResNet18
STRIP 0.24 0.08 0.92 0.22 0.08 0.92 0.03 0.01 0.99 1.00 0.00 1.00 1.00 0.00 1.00 0.40 0.02 0.98 0.41 0.34 0.66 0.47 0.08 0.92

FreqDetector 0.02 0.10 0.90 0.04 0.04 0.96 0.12 0.08 0.92 0.12 0.18 0.82 0.88 0.11 0.89 0.48 0.40 0.60 0.14 0.77 0.23 0.26 0.24 0.76
Ours 0.18 0.15 0.85 0.12 0.05 0.95 0.07 0.01 0.99 0.05 0.04 0.96 0.01 0.07 0.93 0.03 0.00 1.00 0.06 0.01 0.99 0.07 0.05 0.95

MobileViT-xs
STRIP 0.02 0.11 0.89 0.24 0.04 0.96 0.11 0.02 0.98 1.00 0.00 1.00 1.00 0.00 1.00 0.62 0.01 0.99 0.61 0.29 0.71 0.51 0.07 0.93

FreqDetector 0.02 0.10 0.90 0.04 0.04 0.96 0.18 0.14 0.86 0.00 0.00 1.00 0.85 0.13 0.87 0.27 0.16 0.84 0.14 0.77 0.23 0.21 0.19 0.81
Ours 0.15 0.04 0.96 0.13 0.00 1.00 0.01 0.02 0.98 0.18 0.06 0.94 0.03 0.05 0.95 0.05 0.05 0.95 0.07 0.01 0.99 0.09 0.03 0.97

CIFAR100

PreActResNet18
STRIP 0.25 0.12 0.88 0.36 0.20 0.80 0.11 0.10 0.90 1.00 0.00 1.00 1.00 0.00 1.00 0.76 0.06 0.94 0.41 0.29 0.71 0.56 0.11 0.89

FreqDetector 0.02 0.13 0.87 0.09 0.11 0.89 0.08 0.35 0.65 0.02 0.03 0.97 0.00 1.00 0.00 0.07 0.14 0.86 0.12 0.26 0.74 0.06 0.29 0.71
Ours 0.04 0.12 0.88 0.06 0.05 0.95 0.07 0.25 0.75 0.08 0.17 0.83 0.02 0.06 0.94 0.21 0.14 0.86 0.04 0.02 0.98 0.07 0.12 0.88

MobileViT-xs
STRIP 0.29 0.11 0.89 0.31 0.20 0.80 0.09 0.14 0.86 0.88 0.09 0.91 1.00 0.00 1.00 0.60 0.13 0.87 0.24 0.26 0.74 0.49 0.13 0.87

FreqDetector 0.02 0.13 0.87 0.09 0.11 0.89 0.09 0.23 0.77 0.01 0.01 0.99 0.00 1.00 0.00 0.08 0.16 0.84 0.12 0.26 0.74 0.06 0.27 0.73
Ours 0.06 0.12 0.88 0.07 0.02 0.98 0.02 0.05 0.95 0.07 0.06 0.94 0.08 0.16 0.84 0.04 0.03 0.97 0.05 0.04 0.96 0.06 0.07 0.93

Tiny-ImageNet

PreActResNet18
STRIP 0.14 0.29 0.71 0.14 0.08 0.92 0.03 0.02 0.98 0.98 0.02 0.98 0.31 0.41 0.59 0.91 0.00 1.00 0.36 0.19 0.81 0.41 0.14 0.86

FreqDetector 0.25 0.44 0.56 0.01 0.01 0.99 0.19 0.16 0.84 0.00 0.00 1.00 0.49 0.28 0.72 0.03 0.15 0.85 0.03 0.05 0.95 0.15 0.15 0.85
Ours 0.03 0.00 1.00 0.04 0.01 0.99 0.01 0.01 0.99 0.04 0.01 0.99 0.04 0.18 0.82 0.05 0.00 1.00 0.02 0.03 0.97 0.03 0.03 0.97

MobileViT-xs
STRIP 0.22 0.40 0.60 0.24 0.14 0.86 0.04 0.03 0.97 0.93 0.04 0.96 0.32 0.45 0.55 0.62 0.07 0.93 0.36 0.21 0.79 0.39 0.19 0.81

FreqDetector 0.23 0.50 0.50 0.01 0.02 0.98 0.10 0.17 0.83 0.00 0.00 1.00 0.48 0.32 0.68 0.18 0.43 0.57 0.05 0.08 0.92 0.15 0.22 0.78
Ours 0.04 0.00 1.00 0.05 0.00 1.00 0.03 0.02 0.98 0.03 0.00 1.00 0.04 0.01 0.99 0.11 0.14 0.86 0.03 0.02 0.98 0.05 0.03 0.97

ImageNet200

WideResNet101-2
STRIP 0.02 0.04 0.96 0.13 0.12 0.88 - - - 0.11 0.15 0.85 0.28 0.37 0.63 0.03 0.02 0.98 0.31 0.37 0.63 0.15 0.18 0.82

FreqDetector 0.40 0.56 0.44 0.01 0.02 0.98 - - - 0.00 0.00 1.00 0.11 0.88 0.12 0.04 0.08 0.92 0.02 0.04 0.96 0.09 0.27 0.73
Ours 0.04 0.00 1.00 0.04 0.00 1.00 - - - 0.02 0.00 1.00 0.04 0.02 0.98 0.00 0.00 1.00 0.03 0.02 0.98 0.03 0.01 0.99

SwinT-Base
STRIP 0.08 0.19 0.81 0.10 0.10 0.90 - - - 0.98 0.01 0.99 0.34 0.53 0.47 0.64 0.03 0.97 0.38 0.23 0.77 0.42 0.18 0.82

FreqDetector 0.40 0.56 0.44 0.01 0.02 0.98 - - - 0.00 0.00 1.00 0.19 0.78 0.22 0.04 0.07 0.93 0.02 0.04 0.96 0.11 0.25 0.75
Ours 0.04 0.00 1.00 0.02 0.01 0.99 - - - 0.04 0.12 0.88 0.04 0.01 0.99 0.01 0.00 1.00 0.07 0.05 0.95 0.04 0.03 0.97

* LF is computationally infeasible on ImageNet200.

Table 4. The evaluation results on different attacks, datasets, and backbones. We observe that the results in additional metrics (FAR, FRR,
and Backdoored Data Rejection Rate (BDR)) with optimal thresholds are aligned with the conclusions in the paper.

Avg, of CIFAR10 GTSRB CIFAR100 Tiny-ImageNet ImageNet200 AVG

ACC E = 1 E = 10 E = 50 E = 1 E = 10 E = 50 E = 1 E = 10 E = 50 E = 1 E = 10 E = 50 E = 1 E = 10 E = 50 E = 1 E = 10 E = 50

CNNs 0.7766 0.7802 0.8078 0.8931 0.9011 0.8968 0.8850 0.8730 0.8823 0.9618 0.9618 0.9618 0.9773 0.9773 0.9773 0.8987 0.8987 0.9052
ViTs 0.7066 0.8000 0.7801 0.8349 0.8779 0.8687 0.9097 0.8998 0.8957 0.9492 0.9336 0.9377 0.9145 0.9639 0.9639 0.8630 0.8950 0.8892

Table 5. The accuracy of TeCo in the settings where defenders can estimate the thresholds based on n clean images

Avg, of CIFAR10 GTSRB CIFAR100 Tiny-ImageNet ImageNet200 AVG

ACC STRIP FreqDetector Ours STRIP FreqDetector Ours STRIP FreqDetector Ours STRIP FreqDetector Ours STRIP FreqDetector Ours STRIP FreqDetector Ours

CNNs 0.6188 0.8245 0.8939 0.7008 0.7395 0.8899 0.5868 0.8053 0.7434 0.6735 0.8200 0.8101 0.8135 0.8135 0.9760 0.6787 0.8006 0.8627
ViTs 0.5917 0.8233 0.7665 0.4988 0.7687 0.7668 0.6349 0.8066 0.7381 0.6896 0.7920 0.8778 0.6735 0.8153 0.9639 0.6177 0.8012 0.8226

Table 6. The accuracy of TeCo and two baselines in the settings where only one statistical threshold can be set to detect all attacks

Avg, of CIFAR10 GTSRB CIFAR100 Tiny-ImageNet ImageNet200 AVG

ACC γ = 0 γ = 0.5 γ = 1 γ = 0 γ = 0.5 γ = 1 γ = 0 γ = 0.5 γ = 1 γ = 0 γ = 0.5 γ = 1 γ = 0 γ = 0.5 γ = 1 γ = 0 γ = 0.5 γ = 1

CNNs 0.6672 0.7824 0.8521 0.6604 0.7802 0.9242 0.8111 0.8367 0.7735 0.7351 0.7933 0.6504 0.6125 0.7309 0.7613 0.6973 0.7847 0.7923
ViTs 0.6130 0.7345 0.8018 0.6132 0.7236 0.8366 0.7816 0.8440 0.7778 0.7460 0.8590 0.7569 0.6313 0.7435 0.7610 0.6770 0.7809 0.7868

Table 7. The accuracy of TeCo in the settings where only one empirical threshold can be set to detect all attacks

Group G1 G2 G3 G4 G1+2 G1+3 G1+4

Metric AUROC F1 score AUROC F1 score AUROC F1 score AUROC F1 score AUROC F1 score AUROC F1 score AUROC F1 score
Avg. of AVG(↑) 0.780 0.782 0.661 0.677 0.637 0.669 0.536 0.543 0.906 0.902 0.907 0.908 0.900 0.901
Avg. of STD(↓) 0.184 0.178 0.171 0.156 0.226 0.172 0.081 0.081 0.082 0.084 0.104 0.084 0.095 0.092

G2+3 G2+4 G3+4 G1 G2 G3 G4 ALL

AUROC F1 score AUROC F1 score AUROC F1 score AUROC F1 score AUROC F1 score AUROC F1 score AUROC F1 score AUROC F1 score
0.756 0.760 0.734 0.743 0.708 0.713 0.771 0.775 0.935 0.931 0.923 0.920 0.938 0.929 0.945 0.940
0.183 0.170 0.187 0.171 0.199 0.183 0.189 0.175 0.050 0.052 0.060 0.064 0.042 0.041 0.035 0.034

Table 8. The performance of TeCo based on different image corruption sets. Results are averaged from different attacks, datasets, and
backbones.

TeCo based on different deviation measurement methods.

2.4. Discussion of Outliers

There are some interesting results about baselines. Since
the Low-frequency (LF) attack is designed to avoid Fre-

qDetector [5], FreqDetector should have low effectiveness
against this attack. However, we implement them follow-
ing the official codes and find that if we let FreqDetec-
tor work in a binary classification manner and make judg-
ments based on thresholds, it will perform well on LF at-



Measure Standard Deviation Range Mean Deviation Coefficient of Variation Quartile Deviation

Metric AUROC F1 score AUROC F1 score AUROC F1 score AUROC F1 score AUROC F1 score
Avg. of AVG(↑) 0.944 0.939 0.912 0.906 0.945 0.939 0.895 0.906 0.708 0.710
Avg. of STD(↓) 0.035 0.034 0.068 0.069 0.035 0.034 0.075 0.062 0.186 0.180

Table 9. The performance of TeCo based on different measures of variation. Results are averaged from different attacks, datasets, and
backbones.

Group Type Corruptions

G1 Noise Gaussian Noise, Shot Noise, Impulse Noise
G2 Blur Defocus Blur, Glass Blur, Motion Blur, Zoom Blur
G3 Nature Snow, Frost, Fog, Brightness
G4 Digital Contrast, Elastic Transform, Pixelate, Jpeg Compression

Table 10. Images corruptions in different groups.

Runs

Input-aware LIRA

SwinT-B WideResNet SwinT-B WideResNet

AUROC F1 score AUROC F1 score AUROC F1 score AUROC F1 score

Run#1 0.936 0.86 0.423 0.504 0.994 0.975 0.696 0.645
Run#1 0.939 0.864 0.383 0.502 0.994 0.976 0.684 0.667

Table 11. The additional random runs of STRIP on ImageNet200

Dataset Accuracy Badnets Blended LF Input-aware Wanet LIRA SSBA

CIFAR10
Trigger Samples 93.38 79.40 54.41 99.89 3.74 64.84 59.29

Clean Images 96.91 96.91 96.91 96.91 96.91 96.91 96.91

GTSRB
Trigger Samples 91.62 97.05 82.01 73.18 3.98 10.50 12.97

Clean Images 94.28 94.28 94.28 94.28 94.28 94.28 94.28

CIFAR100
Trigger Samples 87.98 77.54 58.47 98.58 1.87 81.42 54.02

Clean Images 96.17 96.17 96.17 96.17 96.17 96.17 96.17

Tiny-ImageNet
Trigger Samples 17.94 99.32 54.80 99.94 4.75 82.64 92.23

Clean Images 98.41 98.41 98.41 98.41 98.41 98.41 98.41

ImageNet200
Trigger Samples 1.39 98.03 - 100.00 0.72 86.90 94.67

Clean Images 99.07 0.00 - 37.20 99.07 37.20 99.07

Table 12. The effectiveness of FreqDetector in its original mode

tack. So we believe it is not unfair to involve LF attack
and FreqDetector simultaneously in our experiments. To
prove the implementation correctness of FreqDetector, we
share the performance of FreqDetector on its original mode
in Tab. 12, which indicates that LF attack does avoid its
detection if FreqDetector works on its original mode. In ad-
dition, Wanet can avoid detection, which is aligned with the
results in our paper.

Another interesting phenomenon is the success of STRIP
against Input-aware and LIRA attacks on SwinTransformer-
base/ImageNet200, while STRIP fails on other datasets and
backbones. We re-run these experiments by setting different
random seeds to ensure the stability of the results. As shown
in Tab. 11, the results from different random seeds are sim-
ilar, indicating that the performance of STRIP is somehow
influenced by the choice of datasets and backbones.

2.5. Additional Experiments

Effectiveness against all-to-all attacks. In practice, a
backdoor-infected model may have multiple labels embed-
ded with Trojans, i.e., the multiple classes scenario. Here,
we consider the worst multiple classes scenario (all-to-all
attack) where every class in the victim model is attacked

(a) Ours (b) STRIP

Figure 1. ROC of detecting all-to-all attacks

and the backdoor trigger can cause a specific transition of
trigger samples’ labels (e.g., turning yi to yi+3). We inves-
tigate TeCo and two baselines against the all-to-all attack on
PreActResNet18/GTSRB8. As depicted in Fig. 1(d)-(e), the
performance of our method drops about 20% in this sce-
nario but still maintains stability across different attacks.
STRIP has lost its performance totally and even makes
contrary predictions. Since FreqDetector makes judgments
only based on the images, it maintains its performance as
the same as which Tab. 4 shows. Fortunately, TeCo is still
comparable with FreqDetector in this worst-case setting as
demonstrated in Tab. 13.

Method Avg. of AUROC Avg. of F1 score Std. of AUROC Std. of F1 score

STRIP 0.3930 0.5026 0.0997 0.0027
FreqDetector 0.7911 0.7671 0.2235 0.2027

Ours 0.7749 0.7856 0.0306 0.0336

Table 13. Quantization results of detecting all-to-all attacks

Smaller triggers. The results show that TeCo is effec-
tive and even more strong against the backdoor attack with
smaller triggers.

Size % of image AUROC(↑) F1 score(↑) ACC(↑) FAR(↓) FRR(↓) BDR(↑)

7*7 0.10 0.9963 0.9969 99.69 0.60 0.01 99.99
14*14 0.39 0.9973 0.9974 99.74 0.49 0.02 99.98
21*21 0.88 0.9784 0.9782 97.82 4.12 0.23 99.77

Table 14. ImageNet200 / SwinT-Base

Transferability to unseen attacks. The results show in
Tab. 15 that TeCo is effective against unseen attacks after
optimizing a threshold using a known attack.

Corruptions as data augmentations. The results show

8We find all-to-all backdoor attacks are not stable enough on other
datasets and cause difficulties to do evaluations.



Badnets Blended LF Input-Aware Wanet LIRA SSBA AVG

Badnets

ACC - 0.9451 0.9339 0.8647 0.8559 0.9322 0.8475 0.8966
FAR - 0.1017 0.1155 0.2096 0.1987 0.1183 0.1641 0.1513
FRR - 0.0029 0.0112 0.0528 0.0833 0.0117 0.1396 0.0502
BDR - 0.9971 0.9888 0.9472 0.9167 0.9883 0.8604 0.9498

Blended

ACC 0.9169 - 0.9366 0.8703 0.8629 0.9215 0.8324 0.8901
FAR 0.1119 - 0.1099 0.1987 0.1849 0.1138 0.1590 0.1464
FRR 0.0511 - 0.0117 0.0531 0.0840 0.0392 0.1771 0.0694
BDR 0.9489 - 0.9883 0.9469 0.9160 0.9608 0.8229 0.9306

Table 15. CIFAR10 / PreActResNet18

that the degradation of performance is not large when the
backdoor attacks use corruption for data augmentation.

Augmentation Metric Badnets Blended SSBA AVG

Aug, 50%
AUROC(↑) 0.9040 0.9038 0.8968 0.9015
F1 score(↑) 0.8890 0.8863 0.8922 0.8892

BDR(↑) 93.77 95.51 95.31 94.86

Table 16. GTSRB / MobileViT-xs

More recent attacks. We show additional results on de-
tecting Sleeper Agent [4].

Attack AUROC(↑) F1 score(↑) ACC(↑) FAR(↓) FRR(↓) BDR(↑)

Sleeper 0.8897 0.9325 93.25 10.80 2.70 97.30

Table 17. CIFAR10 / PreActResNet18

Insightful discussion of TeCo. As we discussed in
Sec.6, the explanation of TeCo is very likely to be the dual-
target training function of backdoor attacks which leads to
the huge bias of victim models. The bias makes victim
models focus on the trigger patterns rather than the origi-
nal information of trigger samples. When the trigger pat-
terns encounter different corruptions, since some corrup-
tions are in texture information while others are in structure
information, the trigger will be robust against certain cor-
ruptions while not robust against others. And since clean
images have more complex texture and structure informa-
tion compared with trigger patterns which need to be sim-
ple and repetitive for causing bias, the clean images will
have consistent robustness. In this paper, our main goal is to
discover and introduce this phenomenon to the community
with comprehensive empirical studies. A formal theoretical
study will be our future work.

Use TeCo to detect backdoor-infected models. As we
have mentioned in our introduction, TeCo is a test-time trig-
ger sample detection (TTSD) method that can seamlessly
integrate into existing model diagnosis defenses for defense.
In practice, defenders can first use model diagnosis defenses
(e.g., AEVA [2], which also works in hard-label black-box
settings) to judge whether the target model is a backdoor
model. Then the defenders can use TeCo to detect the trig-
ger samples. On the other hand, TeCo can be used to diag-
nose the model. Our study shows that for the clean samples
on clean models, the FAR of TeCo will be high when apply-
ing thresholds calculated from the backdoor model (Avg.
FAR≈ 55% on GTSRB/PreActResNet18 clean model). So
defenders may feed a batch of clean images into the target

model, and calculate the FAR of TeCo to judge whether the
target model is a backdoor model.
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(a) Badnets / Tiny-ImageNet.
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(b) Input-aware / GTSRB.

Figure 2. Visualization of trigger samples and their corrupted versions
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