Supplementary materials for paper:
Detecting Backdoors During the Inference Stage Based on Corruption
Robustness Consistency

1. Implementation Details
1.1. Baselines

Tab. 1 and Tab. 2 show the effectiveness of different at-
tacks on different backbones and datasets, indicating that all
the attacks are valid.

STRIP [1]. We re-implement STRIP following the of-
ficial codes ! and a reference . For every input image, we
use 100 clean images from test data for superimposing.

FreqDetector [5]. We re-implement FreqDetector fol-
lowing the official codes *. We choose PreActResNet18 as
the backbone of FreqDetector, and let all clean training im-
ages (for example, 50000 images in CIFAR10) serve as the
training data of FreqDetector. Following the paper and of-
ficial codes, we choose a random white block, random col-
ored block, Gaussian noise, random shadow, and random
blend as data augmentations.

2. Additional Experiments and Discussions
2.1. Thresholds

Since TeCo maps the input image x to a linearly sepa-
rable space and defenders make judgments by a threshold
v, questions are how we can get this threshold and what is
the influence of threshold for our method. We investigate
these questions in three scenarios: (1) calculating appro-
priate thresholds from clean data (this seems to have bro-
ken the “no need for extra data” characteristic of TeCo,
we will discuss this later.). (2) setting single statistical and
static threshold for all potential attacks. (3) setting empiri-
cal threshold directly. We evaluate the effectiveness of TeCo
in these three scenarios. We use ACC as the evaluation met-
ric, which is calculated by:

TP+ TN
ACC_TP+TN+FP+FN' 1)
ACC is enough to estimate the effectiveness because the
number of test clean images and the number of test trigger

https://github.com/garrisongys/STRIP

’https : / / github . com/ wanlunsec / Beatrix / tree /
master/defenses/STRIP

3https : / / github . com / YiZeng623 / frequency -
backdoor/tree/main/Sec4_Frequency_Detection

samples are very close according to Tab. 3.

Effectiveness on estimated threshold. In this setting,
we assume defenders can estimate thresholds based on a
small set of test clean samples. The estimated threshold is
calculated by:

E
1
Yest = E ; Dev(£6)7 (2)

where E is the number of clean images used to estimate
thresholds, Dew is the deviation measurement method, and
L. is the recorded severity list for e-th clean image. Tab 5
shows the average performance of TeCo in different attacks,
datasets, and backbones. These results indicate that TeCo
can achieve high effectiveness with a small number of clean
data.

Effectiveness on statistical and static threshold. In
some real-world scenarios, the defenders can only set a sin-
gle prior threshold for all possible attacks. Thus, we in-
vestigate the performance of TeCo and two baselines in the
static thresholds settings, where only one threshold can be
set to detect all the backdoor attacks. The statistical and
static threshold is calculated by:

M ..
2 x (precision,, X recall
~ = %mzﬂargmax (b v )3

ver  (precision,, + recall)

where M is the number of backdoor attacks. Tab 6 shows
the accuracy of the detection methods. TeCo achieves the
best effectiveness in 50% settings and the best average ef-
fectiveness. These results suggest TeCo can be a practical
solution and have performance comparable with the SOTA
method which works on looser conditions.

Effectiveness on the empirical threshold. The most
simple way to set the thresholds is to choose common val-
ues directly. Tab. 7 shows the average performance of TeCo
in different attacks, datasets, and backbones when an em-
pirical threshold is given. The results suggest that by em-
pirically setting threshold = 1, TeCo can still get an average
ACC =~ 0.79, which is a satisfying performance compared
with the results in Tab. 5. Since the standard deviation is
always larger than or equal to 0, it is easy to choose 1 as the
threshold without estimating on clean data.


https://github.com/garrisongys/STRIP
https://github.com/wanlunsec/Beatrix/tree/master/defenses/STRIP
https://github.com/wanlunsec/Beatrix/tree/master/defenses/STRIP
https://github.com/YiZeng623/frequency-backdoor/tree/main/Sec4_Frequency_Detection
https://github.com/YiZeng623/frequency-backdoor/tree/main/Sec4_Frequency_Detection

Attack— Badnets Blended LF Input-aware Wanet LIRA SSBA
Dataset Backbone ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
PreActResNet18 9153 9502 93.09 99.71 9286 98.88 9033 94.50 9037 91.23 89.94 100.00 92.70 97.19
CIFAR10 MobileViT-xs ~ 90.62 9571 91.14 99.50 90.67 96.37 87.84 96.67 8894 90.78 83.89 100.00 90.29 95.28
PreActResNetl8 97.74 9335 9820 99.98 9725 99.86 97.36 96.39 97.74 9294 9637 100.00 9823 99.53
GTSRB MobileViT-xs 9752 9448 9749 99.98 97.82 9835 96.53 9721 9544 9477 9397 100.00 97.65 98.72
PreActResNetl8  67.38 88.09 69.63 9945 6896 9471 64.48 88.46 6443 9341 6642 100.00 6881 97.54
CIFAR100 MobileViT-xs ~ 59.62 89.39 61.95 99.52 61.36 9545 5563 9238 5924 7581 5298 100.00 60.80 96.87
. PreActResNetl8  56.11 99.97 5640 99.59 5574 98.64 57.09 99.08 57.29 99.51 5457 9996 5532 97.73
Tiny-ImageNet MobileViT-xs ~ 47.61 99.99 4808 99.90 4841 97.18 5591 99.67 5538 99.18 51.00 99.95 4824 97.27
WideResNet101-2  71.06 99.76 71.75  99.28 - - 7565 8204 9444 9036 77.39 100.00 90.51 94.14
ImageNet200 SwinT-Base 7448 99.94 78.89 100.00 - - 84.92 9991 77.04 94.83 82.88 100.00 97.50 86.22
GTSRB (all2all)  PreActResNetl8 97.84 91.88 98.54 9572 98.16 96.56 97.25 8578 98.88 98.82 96.64 96.59 97.88 95.43

Table 1. The effectiveness of backdoor attacks on different backbones and datasets.

evaluate our method.
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Table 2. The effectiveness of backdoor attacks on different target
labels

Test Data

Dataset #Classes Image Size Training Data

Clean Images

10000
12630
10000
10000
10000

Trigger Samples

9000
12570
9900
9950
9950

CIFARIO
GTSRB
CIFAR100
Tiny-ImageNet
ImageNet200

10
43
100
200
200

3x32x32
3x32x32
3x32x32
3x64x64
3x224x224

50000
39209
50000
100000
100000

Table 3. Datasets for evaluations

Statement of No Need for Extra Data

In our paper, we claim that the proposed method TeCo
is independent of extra clean data. However, someone may
get confused because theoretically TeCo still needs clean
data to get the most appropriate thresholds. We emphasize
TeCo’s “no need for extra data” characteristic from two as-
pects: On the one hand, compared with black-box TTSD
methods, TeCo is free of extra data in the linearly separa-
ble space mapping process, which is clearly different from
existing methods. For example, STRIP superimposes var-
ious clean images on the suspicious samples, and FreqDe-
tector needs clean data to serve as the training set of the
trigger sample detector. These methods cannot map the in-
put data into a linearly separable space without clean data.
On the other hand, other TTSD methods need clean data to
gain appropriate thresholds, which seems similar to TeCo.
However, TeCo is still different from them because accord-
ing to Tab. 5 and Tab. 7, we can directly set a threshold
for TeCo (for example, set v = 1) without estimating on
clean data and enjoy similar performance compared with
estimated thresholds. Take Beatrix [3] as a counterexample,
Beatrix is a white-box TTSD method that needs clean data

We use these backdoor-infected models to further

to get appropriate thresholds. According to the paper, the
appropriate threshold of Beatrix on CIFAR10 is about 0.02,
however for GTSRB, the appropriate threshold is about 1.0,
which means the best thresholds of Beatrix among different
datasets are quite different, making it hard to set empirical
thresholds.

In a nutshell, for most TTSD methods, the need for extra
data is a necessary condition for their effectiveness. On the
contrary, extra clean data is neither sufficient nor necessary
for TeCo. And this is why we can claim TeCo has no need
for extra data.

2.2. Ablation Studies of Image Corruption Set

We investigate the influence of image corruption set by
dividing the involved 15 image corruptions into 4 groups,
as shown in Tab. 10. Tab. 8 presents the performance of
TeCo based on different combinations of image corruption
groups. The results suggest that only relying on a single
type of corruption is not sufficient to get high effective-
ness, which is a misunderstanding in related works as we
mentioned in our paper. With more corruptions being con-
sidered, the performance of TeCo grows correspondingly,
indicating that the diversity of image corruptions is an im-
portant factor for gaining effectiveness and stability across
different attacks and datasets.

2.3. Ablation Studies of Variation Metrics

We investigate the influence of the deviation mea-
surement method Dev by introducing four more metrics:
Range #, Mean Deviation >, Coefficient of Variation ¢, and
Quartile Deviation ’. Tab. 9 presents the performance of

4https :/ / en . wikipedia . org / wiki / Range _
(statistics)
5https :/ / en . wikipedia . org / wiki / Average _

absolute_deviation
6https://en.wikipedia.org/wiki/Coefficientfofi

variation
7https:

range

//en.wikipedia.org/wiki/Interquartile_


https://en.wikipedia.org/wiki/Range_(statistics)
https://en.wikipedia.org/wiki/Range_(statistics)
https://en.wikipedia.org/wiki/Average_absolute_deviation
https://en.wikipedia.org/wiki/Average_absolute_deviation
https://en.wikipedia.org/wiki/Coefficient_of_variation
https://en.wikipedia.org/wiki/Coefficient_of_variation
https://en.wikipedia.org/wiki/Interquartile_range
https://en.wikipedia.org/wiki/Interquartile_range

Attack— Badnets Blended LF Input-Aware Wanet LIRA SSBA AVG
Dataset Model Detection) FAR FRR BDR FAR FRR BDR FAR FRR BDR FAR FRR BDR FAR FRR BDR FAR FRR BDR FAR FRR BDR FAR FRR BDR
STRIP 037 0.5 085 038 026 074 008 005 095 100 000 100 100 000 100 071 00l 099 100 000 100 065 007 093

PreActResNetls  FreqDetector 002 008 092 007 012 088 010 029 071 001 001 099 038 052 048 0.0 023 077 0.0 026 074 011 022 078

Ours 001 005 095 010 000 100 011 001 099 010 006 095 010 009 091 012 00l 099 020 003 097 012 004 097

CIFAR10 STRIP 044 016 084 076 017 083 014 014 086 100 000 100 100 000 100 086 00l 100 100 000 100 074 007 093
MobileViTxs  FreqDetector 002 008 092 007 012 088 013 035 065 003 003 097 000 100 000 003 010 090 010 026 074 005 028 072

Ours 044 010 090 0.4 001 099 014 004 096 022 021 079 010 009 091 007 007 093 012 006 095 0.7 008 092

STRIP 024 008 092 022 008 092 003 001 099 100 000 100 100 000 100 040 002 098 041 034 066 047 008 092

PreActResNetls  FreaDetector 002 0.10 090 004 004 096 0.2 008 092 012 018 082 088 0.1l 08 048 040 060 014 077 023 026 024 076

Ours 0.8 015 085 012 005 095 007 001 099 005 004 096 001 007 093 003 000 100 006 001 099 007 005 0.5

GTSRB STRIP 002 011 089 024 004 096 011 002 098 100 000 100 100 000 100 062 00l 099 061 029 071 051 007 093
MobileViT.xs  FreqDetector 002 0.10 090 004 004 096 018 014 086 000 000 100 085 013 087 027 016 084 014 077 023 021 019 081

Ours 0.5 004 096 0.3 000 100 00l 002 098 018 006 094 003 005 095 005 005 095 007 00l 099 009 003 097

STRIP 025 012 088 036 020 080 011 010 090 100 000 100 100 000 100 076 006 094 041 029 071 056 0.11 089

PreActResNetls  FreqDetector 002 0.3 087 009 0.1 089 008 035 065 002 003 097 000 100 000 007 014 08 012 02 074 006 029 071

Ours 004 002 088 006 005 095 007 025 075 008 017 083 002 006 094 021 014 086 004 002 098 007 012 088

CIFAR100 STRIP 029 0.1 089 031 020 080 009 014 086 088 009 091 100 000 100 060 013 087 024 026 074 049 0.3 087
MobileViT.xs  FreqDetector 002 0.3 087 009 011 089 009 023 077 001 001 099 000 100 000 008 016 084 012 026 074 006 027 073

Ours 006 012 088 007 002 098 002 005 095 007 006 094 008 016 084 004 003 097 005 004 096 006 007 093

STRIP 0.4 029 071 014 008 092 003 002 098 098 002 098 031 041 059 091 000 100 036 019 081 041 014 086

PreActResNetls  FreqDetector 025 044 056 001 001 099 019 016 084 000 000 100 049 028 072 003 0.5 085 003 005 095 015 015 085

Ours 003 000 100 004 00l 099 00l 001 099 004 001 099 004 018 082 005 000 100 002 003 097 003 003 097

Tiny-ImageNet STRIP 022 040 060 024 0.4 08 004 003 097 093 004 096 032 045 055 062 007 093 036 021 079 039 019 081
MobileViT.xs  FreaDetector 023 050 050 001 002 098 010 017 083 000 000 100 048 032 068 018 043 057 005 008 092 0.5 022 078

Ours 004 000 100 005 000 100 003 002 098 003 000 100 004 001 099 011 014 086 003 002 098 005 003 097

STRIP 002 004 096 013 012 088 0.1 0I5 085 028 037 063 003 002 098 031 037 063 015 018 082

WideResNetl01.2  FreqDetector 040 0.56 044 001 002 098 000 000 100 011 088 012 004 008 092 002 004 096 009 027 073

Ours 004 000 100 004 000 1.00 002 000 100 004 002 098 000 000 100 003 002 098 003 001 099

ImageNet200 STRIP 008 0.9 081 010 010 090 © 098 001 099 034 053 047 064 003 097 038 023 077 042 018 082
SwinT.Base  FreqDetector 040 056 044 001 002 0.98 - 000 000 100 0.9 078 022 004 007 093 002 004 096 011 025 075

Ours 004 000 100 002 001 099 004 012 088 004 001 099 00l 000 100 007 005 095 004 003 097

“LF is computationally infeasible on ImageNet200.

Table 4. The evaluation results on different attacks, datasets, and backbones. We observe that the results in additional metrics (FAR, FRR,
and Backdoored Data Rejection Rate (BDR)) with optimal thresholds are aligned with the conclusions in the paper.

Avg, of | CIFAR10 | GTSRB | CIFAR100 | Tiny-ImageNet | ImageNet200 | AVG
ACC | E=1 E=10 E=50|E=1 E=10 E=50|E=1 E=10 E=50|E=1 E=10 E=50| E=1 E=10 E=50|E=1 E=10 E=50
CNNs | 07766 0.7802  0.8078 | 0.8931 0.9011 0.8968 | 0.8850 0.8730  0.8823 | 0.9618 09618 09618 | 0.9773 09773  0.9773 | 0.8987 0.8987  0.9052
ViTs | 0.7066 0.8000  0.7801 | 0.8349 0.8779  0.8687 | 0.9097 0.8998  0.8957 | 0.9492 09336 0.9377 | 0.9145 0.9639 0.9639 | 0.8630 0.8950  0.8892

Table 5. The accuracy of TeCo in the settings where defenders can estimate the thresholds based on n clean images

Avg, of | CIFAR10 | GTSRB | CIFAR100 | Tiny-ImageNet | ImageNet200 | AVG
ACC ‘ STRIP  FregDetector ~ Ours ‘ STRIP  FregDetector ~ Ours ‘ STRIP  FreqDetector ~ Ours ‘ STRIP  FregDetector ~ Ours ‘ STRIP  FregDetector ~ Ours ‘ STRIP  FregDetector ~ Ours
CNNs | 06188 08245  0.8939 | 07008 07395 08899 | 0.5868 08053 07434 | 0.6735  0.8200 08101 | 0.8135 08135 09760 | 06787  0.8006  0.8627
ViTs | 0.5917 0.8233 0.7665 | 0.4988 0.7687 0.7668 | 0.6349 0.8066 0.7381 | 0.6896 0.7920 0.8778 | 0.6735 0.8153 0.9639 | 0.6177 0.8012 0.8226

Table 6. The accuracy of TeCo and two baselines in the settings where only one statistical threshold can be set to detect all attacks

Avg, of CIFAR10 GTSRB CIFAR100 Tiny-ImageNet ImageNet200 AVG
ACC =0 =05 =1 = y=05 =1 =0 ~v=05 =1 ~v=0 ~v=05 7= ¥y=0 =05 =1 =0 =05 ~=1
CNNs  0.6672  0.7824  0.8521 0.6604 0.7802 0.9242 0.8111 0.8367 0.7735 0.7351 0.7933  0.6504 0.6125 0.7309 0.7613 0.6973  0.7847  0.7923
ViTs  0.6130 0.7345 0.8018 0.6132 0.7236 0.8366 0.7816 0.8440 0.7778 0.7460 0.8590 0.7569 0.6313 0.7435 0.7610 0.6770 0.7809  0.7868
Table 7. The accuracy of TeCo in the settings where only one empirical threshold can be set to detect all attacks
Group ‘ Gy ‘ Ga ‘ Gs ‘ G4 ‘ Gi+2 | G143 | G144
Metric AUROC F1score | AUROC Fl score | AUROC Flscore | AUROC F1 score | AUROC Fl score | AUROC F1 score | AUROC Fl1 score
Avg. of AVG(T) 0.780 0.782 0.661 0.677 0.637 0.669 0.536 0.543 0.906 0.902 0.907 0.908 0.900 0.901
Avg. of STD(]) 0.184 0.178 0.171 0.156 0.226 0.172 0.081 0.081 0.082 0.084 0.104 0.084 0.095 0.092
Gays | Gata | G314 Gi A Gs Ga ALL
AUROC  Flscore | AUROC Flscore | AUROC F1score | AUROC Fl score | AUROC Flscore | AUROC F1 score | AUROC Fl score | AUROC F1 score
0.756 0.760 0.734 0.743 0.708 0.713 0.771 0.775 0.935 0.931 0.923 0.920 0.938 0.929 0.945 0.940
0.183 0.170 0.187 0.171 0.199 0.183 0.189 0.175 0.050 0.052 0.060 0.064 0.042 0.041 0.035 0.034

Table 8. The performance of TeCo based on different image corruption sets. Results are averaged from different attacks, datasets, and

backbones.

TeCo based on different deviation measurement methods.

2.4. Discussion of Outliers

There are some interesting results about baselines. Since
the Low-frequency (LF) attack is designed to avoid Fre-

gDetector [5], FreqDetector should have low effectiveness
against this attack. However, we implement them follow-
ing the official codes and find that if we let FreqDetec-
tor work in a binary classification manner and make judg-
ments based on thresholds, it will perform well on LF at-



Measure ‘ Standard Deviation Range Mean Deviation Coefficient of Variation = Quartile Deviation

Metric AUROC Flscore AUROC Flscore AUROC Flscore AUROC F1 score AUROC  F1 score
Avg. of AVG(T) 0.944 0.939 0.912 0.906 0.945 0.939 0.895 0.906 0.708 0.710
Avg. of STD(]) | 0.035 0.034 0.068 0.069 0.035 0.034 0.075 0.062 0.186 0.180

Table 9. The performance of TeCo based on different measures of variation. Results are averaged from different attacks, datasets, and

backbones.
Group  Type Corruptions
Gi Noise Gaussian Noise, Shot Noise, Impulse Noise
Go Blur Defocus Blur, Glass Blur, Motion Blur, Zoom Blur
[ Nature Snow, Frost, Fog, Brightness

Ga Digital Contrast, Elastic Transform, Pixelate, Jpeg Compression

Table 10. Images corruptions in different groups.
Input-aware LIRA
SwinT-B WideResNet SwinT-B WideResNet
AUROC  Flscore AUROC Flscore AUROC Flscore AUROC Fl score

Run#1 0.936 0.86 0.423 0.504 0.994 0.975 0.696 0.645
Run#1 0.939 0.864 0.383 0.502 0.994 0.976 0.684 0.667

Runs

Table 11. The additional random runs of STRIP on ImageNet200

Dataset Accuracy Badnets Blended LF  Input-aware Wanet LIRA SSBA
Trigger Samples 9338 79.40  54.41 99.89 374 6484 59.29

CIFARIO Clean Images 9691 9691  96.91 96.91 96.91 9691 96.91
Trigger Samples ~ 91.62  97.05  82.01 73.18 398 1050 12.97

GTSRB Clean Images 9428 9428 9428 94.28 9428 9428 9428
Trigger Samples ~ 87.98  77.54 5847 98.58 1.87 8142 54.02

CIFAR100 Clean Tmages ~ 96.17  96.17  96.17 96.17 96.17 96.17 96.17

) Trigger Samples  17.94 9932 5480  99.94 475 8264 9223
Tiny-ImageNet  Clean Images 98.41 9841  98.41 98.41 9841 98.41 9841
Trigger Samples 139 98.03 . 100.00 072 8690 94.67

ImageNe200  Clean Tmages ~ 99.07 0.00 . 37.20 99.07 3720  99.07

Table 12. The effectiveness of FreqDetector in its original mode

tack. So we believe it is not unfair to involve LF attack
and FreqDetector simultaneously in our experiments. To
prove the implementation correctness of FreqDetector, we
share the performance of FreqDetector on its original mode
in Tab. 12, which indicates that LF attack does avoid its
detection if FreqDetector works on its original mode. In ad-
dition, Wanet can avoid detection, which is aligned with the
results in our paper.

Another interesting phenomenon is the success of STRIP
against Input-aware and LIRA attacks on SwinTransformer-
base/ImageNet200, while STRIP fails on other datasets and
backbones. We re-run these experiments by setting different
random seeds to ensure the stability of the results. As shown
in Tab. 11, the results from different random seeds are sim-
ilar, indicating that the performance of STRIP is somehow
influenced by the choice of datasets and backbones.

2.5. Additional Experiments

Effectiveness against all-to-all attacks. In practice, a
backdoor-infected model may have multiple labels embed-
ded with Trojans, i.e., the multiple classes scenario. Here,
we consider the worst multiple classes scenario (all-to-all
attack) where every class in the victim model is attacked

PreActResNet18 / GTSRE PreActResNet18 / GTSRB
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Figure 1. ROC of detecting all-to-all attacks

and the backdoor trigger can cause a specific transition of
trigger samples’ labels (e.g., turning y; to y; +3). We inves-
tigate TeCo and two baselines against the all-to-all attack on
PreActResNet18/GTSRB®. As depicted in Fig. 1(d)-(e), the
performance of our method drops about 20% in this sce-
nario but still maintains stability across different attacks.
STRIP has lost its performance totally and even makes
contrary predictions. Since FreqDetector makes judgments
only based on the images, it maintains its performance as
the same as which Tab. 4 shows. Fortunately, TeCo is still
comparable with FreqDetector in this worst-case setting as
demonstrated in Tab. 13.

Method Avg. of AUROC  Avg. of Fl score  Std. of AUROC  Std. of F1 score

STRIP 0.3930 0.5026 0.0997 0.0027
FreqDetector 0.7911 0.7671 0.2235 0.2027
Ours 0.7749 0.7856 0.0306 0.0336

Table 13. Quantization results of detecting all-to-all attacks

Smaller triggers. The results show that TeCo is effec-
tive and even more strong against the backdoor attack with
smaller triggers.

Size % ofimage AUROC(T) Flscore(T) ACC(T) FAR(]) FRR(l) BDR(?)

77 0.10 0.9963 0.9969 99.69 0.60 0.01 99.99
14%14 0.39 0.9973 0.9974 99.74 0.49 0.02 99.98
21%21 0.88 0.9784 0.9782 97.82 4.12 0.23 99.77

Table 14. ImageNet200 / SwinT-Base

Transferability to unseen attacks. The results show in
Tab. 15 that TeCo is effective against unseen attacks after
optimizing a threshold using a known attack.

Corruptions as data augmentations. The results show

8We find all-to-all backdoor attacks are not stable enough on other
datasets and cause difficulties to do evaluations.



Badnets  Blended LF Input-Aware  Wanet LIRA SSBA  AVG

ACC - 09451 09339 08647  0.8559 09322 0.8475 0.8966
FAR - 0.1017  0.1155 02096  0.1987 0.1183 0.1641 0.1513
Badnets  pRR - 00029 00112 00528 00833 00117 0.1396 0.0502
BDR - 09971 09888 09472 09167 09883 0.8604 0.9498
ACC 09169 - 09366 08703  0.8629 09215 0.8324 0.8901
FAR  0.1119 - 01099 0.1987  0.1849 0.1138 0.1590 0.1464
Blended  FRR  0.0511 - 0.0117 0.0531 0.0840  0.0392 0.1771  0.0694
BDR  0.9489 - 09883 09469 09160 09608 0.8229 0.9306

Table 15. CIFAR10 / PreActResNet18

that the degradation of performance is not large when the
backdoor attacks use corruption for data augmentation.

Augmentation Metric Badnets Blended SSBA  AVG
AUROC(1) 0.9040  0.9038 0.8968 0.9015
Flscore(T) 0.8890  0.8863 0.8922 0.8892

Aug, 50%
BDR(1) 93.77 95.51 9531  94.86

Table 16. GTSRB / MobileViT-xs

More recent attacks. We show additional results on de-
tecting Sleeper Agent [4].

Attack  AUROC(T) Flscore(f) ACC(1) FAR(]) FRR(]) BDR(1)

Sleeper 0.8897 0.9325 93.25 10.80 2.70 97.30

Table 17. CIFAR10 / PreActResNet18

Insightful discussion of TeCo. As we discussed in
Sec.6, the explanation of TeCo is very likely to be the dual-
target training function of backdoor attacks which leads to
the huge bias of victim models. The bias makes victim
models focus on the trigger patterns rather than the origi-
nal information of trigger samples. When the trigger pat-
terns encounter different corruptions, since some corrup-
tions are in texture information while others are in structure
information, the trigger will be robust against certain cor-
ruptions while not robust against others. And since clean
images have more complex texture and structure informa-
tion compared with trigger patterns which need to be sim-
ple and repetitive for causing bias, the clean images will
have consistent robustness. In this paper, our main goal is to
discover and introduce this phenomenon to the community
with comprehensive empirical studies. A formal theoretical
study will be our future work.

Use TeCo to detect backdoor-infected models. As we
have mentioned in our introduction, TeCo is a fest-time trig-
ger sample detection (TTSD) method that can seamlessly
integrate into existing model diagnosis defenses for defense.
In practice, defenders can first use model diagnosis defenses
(e.g., AEVA [2], which also works in hard-label black-box
settings) to judge whether the target model is a backdoor
model. Then the defenders can use TeCo to detect the trig-
ger samples. On the other hand, TeCo can be used to diag-
nose the model. Our study shows that for the clean samples
on clean models, the FAR of TeCo will be high when apply-
ing thresholds calculated from the backdoor model (Avg.
FAR= 55% on GTSRB/PreActResNet18 clean model). So
defenders may feed a batch of clean images into the target

model, and calculate the FAR of TeCo to judge whether the
target model is a backdoor model.
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Figure 2. Visualization of trigger samples and their corrupted versions
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