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Figure 9. Detailed autoencoder architecture for PDM version of diversity-measurable anomaly detection.

Figure 10. Detailed autoencoder architecture for PPDM version of diversity-measurable anomaly detection.

A. Detailed architectures

The detailed autoencoder architecture for anomaly de-
tection in surveillance videos is shown in Fig. 9. The
encoder contains four stages of different scales, where
the Convolution blocks in each stage are: Conv2d(c, c′)-
BN(c′)-ReLU -Conv2d(c′, c′)-BN(c′)-ReLU in turn and
reduced skip-connections are applied in the last two stages.
The latent feature dimensions are set to 128, 256, 512, 512
and 1024 for MNIST [6], Ped2 [11], Avenue [9], Shang-
haiTech [10] and MVTec [2] respectively (the number of
skip-connection dimensions is discussed in Appendix B).
Besides, Conv2d function is replaced by CoordConv2d
[8] in the decoder.

The backbone of PDM is composed of convolution
blocks that same as the decoder and ResBlocks. The 1st

head includes two stride-2 ConvLayers, while the 2nd does
not. Then we generate a 2d-coordinate matrix with values
between [−1, 1] in both x and y directions, add it to the es-
timation and crop the output to values between [−1, 1].

The autoencoder architecture for the PPDM version of
DMAD framework is shown in Fig. 10. ICM receives three-
layers of outputs from WideResNet [17] and performs re-

duction operation respectively, where the number of output
channels is 64. Then stride-2 ConvLayer is used to reduce
feature size to match the last layer. Finally, we concatenate
the three 64-channel outputs with the quantized result and
apply a residual bottleneck as in RD [4].

The autoencoder architecture used in toy experiment fol-
lows the implementation of VQ-VAE [14]. Please refer to
the code for detailed settings.

B. Skip-connection channels and multi-level
memory items

The reduced skip-connection channels is set to 32, 32, 64
and 64 for Ped2 [11], ShanghaiTech [10], Avenue [9] and
MVTec [2] respectively. This value depends on how rich
the detail is, e.g. we use more channels in Avenue [9] among
surveillance videos, because it is collected by close shot and
contains the highest resolution. And we follow the settings
of RD [4] to obtain the output of WideResNet [17] directly
for defect localization. The skip-connections are used for
information compression in this architecture. A more de-
tailed study on the number of skip-connection channels and
multi-level memory items is shown in Tab. 6.



Table 6. Anomaly detection results of class “Screw” on MVTec [2]
with different settings on skip-connection and multi-level mem-
ory. Si and Mi mean the number of skip-connections and memory
items in the i-th stage respectively. Hyperparameter α is set using
grid-search.

Channels / Memory items
AUC%Stage-1 Stage-2 Stage-3

S1 M1 S2 M2 S3 M3

64 200 64 200 64 200 97.9
64 200 64 200 64 100 98.2
64 400 64 400 64 100 98.4

256 - 64 400 64 100 98.2

256 - 512 - 1024 200 97.8
256 - 512 - 64 200 98.7
64 - 64 - 64 100 98.3
64 - 64 - 64 200 100.
64 - 64 - 64 400 99.6

C. Details in foreground-background selection

Under normal circumstances, we jointly optimize xbg

and fm(·) with reconstruction loss, where the background
template is a learnable tensor xbg ∈ RC×H×W and we es-
timate it by minimizing:

Lbg = ∥x− xbg∥2. (24)

Note that different camera angles, instance scales and light
conditions may affect the convergence of the training pro-
cess.

C.1. Training on sparse instances

The temporal and spatial sparsity is a serious problem in
anomaly detection. Benefiting from learning a background
template xbg , we apply spatial weights by forcing fm(·) to
focus on the instances instead of the background in Shang-
haiTech [10].

C.2. Training on different scenes

Estimating the foreground-background binary mask with
input x directly allow for weighted mixture of background
template xbg and foreground reconstruction to improve pre-
diction quality on the edge. However, different scenes and
foreground scales in ShanghaiTech [10] make the training
of xbg and fm(·) hard to convergence and lack of train-
ing data for each scene further increases the difficulty. We
address these problems by initializing xbg with traditional
method (e.g. GMM) and applying an extra constraint on the

Table 7. Ablation study of memory quantity on Ped2 [11].

♯ Mem. 5 20 100 200 500 1000

AUC% 99.7 99.5 99.6 99.7 99.6 99.6

Figure 11. Qualitative results on ShanghaiTech [10]. The second
row shows the binary masks output from fm(·). The third row
shows the reconstruction outputs, where the abnormal instances
(as indicated by the red boxes) are not reconstructed well.

binary mask m = fm(x):

Lmask = − 1

HW

∑
mlog(m)+max(0,

1

HW

∑
m−ϵ),

(25)
where ϵ is a small margin, the first term encourages fm(·) to
conduct deterministic prediction and the second one makes
the model tend to reconstruct the background based on xbg

instead of the reconstruction from memory items. The out-
put mask of fm(x) and the final outputs of the reconstruc-
tion are shown in Fig. 11 qualitatively.

Note that although the algorithm improve the perfor-
mance on different scenes, the constraint may introduce
noise near the foreground, especially on the edges, which
makes the results of fixed-view videos worse. So for fixed-
view videos, we do not impose additional constraint to make
the convergence easier.

D. More Ablation study and explanation
D.1. Memory quantity

Tab. 7 demonstrates memory quantity is not a trade-off
factor. We make further explanation through Fig. 3 in the
main paper: tuning memory quantity without combination
of memory items can only generate dataset-dependent nor-



Table 8. Ablation study of Arec-only and Adf -only on 4 datasets
[2, 9–11].

Task Ped2 Avenue Shanghai MVTec

Arec/Adf 99.4/88.9 91.7/89.2 77.7/77.8 99.2/75.2

mal pattern, so the boundary between normal and abnormal
is in the long uncertain measurement (gray area in the last
row). Our main contribution is pushing the unmeasurable
reconstruction error to “Abnormal Info.” (gray area in the
penultimate line) and compensating the insufficiency of nor-
mal diversity caused by memory reduction with diversity-
measurable modeling, so that anomaly scores on the bound-
ary are distinguishable and the memory sensitivity becomes
lower.

D.2. Quantity of coarse-to-fine deformations

Tab. 4 in the main paper demonstrates that K is not a
trade-off factor. Since the control grid generated by defor-
mation module with size of 2K is much larger than the tar-
get size (e.g. pedestrians and their limbs) on condition of
K > 2, the redundant estimation heads cannot further de-
crease Lrec. So that Ldf constrains the deformation and
further increase of K will not bring performance gain.

D.3. Scoring function weight

Tab. 8 shows the results on settings of Arec-only and
Adf -only. We find using separate scoring function some-
times outperforms SOTA, though much worse than the
combination. The value of hyperparameter α depends on
whether the data includes significant geometrical variations.
For pedestrian images with limited deformation, α is rel-
atively big (0.2). For normal workpieces in MVTec with
messy deformation as show in Fig. 12, the discrimination
of Adf approaches saturation with increasing diversity, so
that smaller α (0.05) can make use of more discriminative
Arec. If we set α = 0.2 in all cases, PPDM also gets 99.3%
on MVTec [2] and outperforms SOTA.

D.4. Constraint weight

γ1 is used to balance veracity and diversity of quantized
embedding. It is not sensitive in our experiments. We set γ1
to 1 for simplicity, just like VQ-VAE [14].

γ2 is used to control the ability of diversity modeling
(strength and smoothness). In order to meet Cond.1 in Sec.
3.1, γ2 needs to be small to allow for strong deformation in
diverse normal patterns. Whereas PPDM may lead to over-
deformation reconstruction on images (e.g. in MVTec), so
we use larger γ2 to alleviate shortcut learning while meet-
ing Cond.1 for this case. Actually, the performance only
drops a little if we set γ2 = 1 for all cases (Ped2 [11]:
99.7%→99.5%).

Table 9. One-class novelty (semantic shift) detection with
AUC(%) on MNIST [6] and Fashion-MNIST [15]. Hyperparam-
eter is set using grid-search.

Task RD [4] Ours

MNIST 99.3 99.5

Fashion-MNIST 95.0 96.3

Figure 12. Qualitative results on MVTec [2]. PPDM tries to trans-
form the original inputs to the reference with less details and de-
gree of anomalies. The deformation together with reconstruction
error determine the final anomaly score.

γ3 is used to control the reconstruction granularity and
alleviate shortcut learning as discussed in Sec. 4.5.

E. Semantic shift detection results
We verify DMAD (PPDM) in one-class novelty (seman-

tic shift) detection on MNIST [6] and Fashion-MNIST [15]
datasets. The results in Tab. 9 show DMAD outperforms the
SOTA [4] in this task. Actually, DMAD works well on both
semantic shift and covariate shift as long as they mainly in-
volve geometrical diversity.

F. Detailed results on MVTec
We show more detailed results on MVTec [2] in Tab. 10

and Tab. 11 with hyperparameter α set by grid-search.
PPDM can tolerate and eliminate diversity from normal im-
ages, while detect real damages which have more signif-
icant deformation and reconstruction error. As shown in
Fig. 12, PPDM tries to construct reference for screw and
carpet which need more deformation near the defects.



Table 10. Detailed detection results on MVTec [2].

Class\Methods GN [1] PSVDD [16] DAAD [5] CutPaste [7] PaDiM [3]PatchCore [12]DRAEM [18] RD [4] Ours

Carpet 69.9 92.9 86.6 93.9 99.8 98.7 97.0 98.9 100.
Grid 70.8 94.6 95.7 100. 96.7 98.2 99.9 100. 100.

Leather 84.2 90.9 86.2 100. 100. 100. 100. 100. 100.
Tile 79.4 97.8 88.2 94.6 98.1 98.7 99.6 99.3 100.

Wood 83.4 96.5 98.2 99.1 99.2 99.2 99.1 99.2 100.

AvgTextures 77.5 94.5 91.0 97.5 98.8 99.0 99.1 99.5 100.

Bottle 89.2 98.6 97.6 98.2 99.9 100. 99.2 100. 100.
Cable 75.7 90.3 84.4 81.2 92.7 99.5 91.8 95.0 99.1

Capsule 73.2 76.7 76.7 98.2 91.3 98.1 98.5 96.3 98.9
Hazelnut 78.5 92.0 92.1 98.3 92.0 100. 100. 99.9 100.
Metal Nut 70.0 94.0 75.8 99.9 98.7 100. 98.7 100. 100.

Pill 74.3 86.1 90.0 94.9 93.3 96.6 98.9 96.6 97.3
Screw 74.6 81.3 98.7 88.7 85.8 98.1 93.9 97.0 100.

Toothbrush 65.3 100. 99.2 99.4 96.1 100. 100. 99.5 100.
Transistor 79.2 91.5 87.6 96.1 97.4 100. 93.1 96.7 98.7

Zipper 74.5 97.9 85.9 99.9 90.3 99.4 100. 98.5 99.6

AvgObjects 75.5 90.8 88.8 95.5 93.8 99.2 97.4 98.0 99.4

AvgAll 76.2 92.1 89.5 96.1 95.5 99.1 98.0 98.5 99.6

Table 11. Detailed localization results on MVTec [2].

Class\Methods PSVDD [16] CutPaste [7] PaDiM [3] PatchCore [12]DRAEM [18] TMAE [13] RD [4] Ours

Carpet 92.6 98.3 99.1 99.0 95.5 98.5 98.9 99.1
Grid 96.2 97.5 97.3 98.7 99.7 97.5 99.3 99.2

Leather 97.4 99.5 99.2 99.3 98.6 98.1 99.4 99.5
Tile 91.4 90.5 94.1 95.6 99.2 82.5 95.6 96.0

Wood 90.8 95.5 94.9 95.0 96.4 92.6 95.3 95.5

AvgTextures 93.7 96.3 96.9 97.6 97.9 93.8 97.7 97.9

Bottle 98.1 97.6 98.3 98.6 99.1 93.4 98.7 98.9
Cable 96.8 90.0 96.7 98.4 94.7 92.9 97.4 98.1

Capsule 95.8 97.4 98.5 98.8 94.3 87.4 98.7 98.3
Hazelnut 97.5 97.3 98.2 98.7 99.7 98.5 98.9 99.1
Metal Nut 98.0 93.1 97.2 98.4 99.5 91.8 97.3 97.7

Pill 95.1 95.7 95.7 97.4 97.6 89.9 98.2 98.7
Screw 95.7 96.7 98.5 99.4 97.6 97.6 99.6 99.6

Toothbrush 98.1 98.1 98.8 98.7 98.1 98.1 99.1 99.4
Transistor 97.0 93.0 97.5 96.3 90.9 92.7 92.5 95.4

Zipper 95.1 99.3 98.5 98.8 98.8 97.8 98.2 98.3

AvgObjects 96.7 95.8 97.8 98.4 97.0 94.0 97.9 98.4

AvgAll 95.7 96.0 97.5 98.1 97.3 93.9 97.8 98.2
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