
DualVector: Unsupervised Vector Font Synthesis with Dual-Part Representation
Supplementary Material

Ying-Tian Liu1 Zhifei Zhang2 Yuan-Chen Guo1 Matthew Fisher2

Zhaowen Wang2 Song-Hai Zhang1∗

1 BNRist, Department of Computer Science and Technology, Tsinghua University 2 Adobe Research
{liuyingt20@mails., guoyc19@mails., shz@}tsinghua.edu.cn

{zzhang, matfishe, zhawang}@adobe.com

A. Implementation Details

A.1. Network Architecture and Evaluation

In our implementation of DualVector, we set the number
of dual parts and curves as N = 6 and M = 4. The ar-
chitecture of the image encoder E , Ef and the decoder DI

is shown in Tab. 1, which is similar architecture to that pre-
sented in VQGAN [1]. The output image I is with a reso-
lution of 256 × 256. The path decoder DP is implemented
as an MLP in the size of [256, 256, 256, 8MN]. The di-
mension for the intermediate variables z, fi, µ, σ, T is set
to 256. In the font generation task, SA contains 4 stacked
self-attention layers each with 4 attention heads and the
FFN contains a linear layer in the size of [512, 256]. We
train the model for font reconstruction using Adam opti-
mizer [2] with a learning rate of 1 × 10−3 with cosine an-
nealing decay [4]. For the fine-tuning and refinement step,
we adopt a learning rate of 2.5× 10−4, 0.5, respectively. In
the contour refinement step, the canvas of the SVG glyph
is set to have a side length of 256. For the font recon-
struction task, we set λ’s as λP = 0.5, λI = 1, λu = 1
and the UDF warm-up is adopted in the first 8 epochs, last-
ing ∼ 160 epochs in all. For the font generation task, we
first train the encoding parts, i.e. Ef , SA, FFN and the
embedding producing T , with the latent guidance and KL
loss for 32 epochs to achieve a good initialization. We set
λlatent = 20, λkl = 1.25× 10−4 during this process. After
that, we unfreeze the whole network and train it end-to-end
with λP = 1, λI = 0.5, λkl = 1.25 × 10−4 until conver-
gence. Due to the limited speed of DeepVecFont [6] and our
method in generating fonts, we only evaluate the metrics on
the first 200 fonts of the 1425 fonts in our all experiments
for all methods.

A.2. Contour Refinement

To be clear, the contour ∂O contains multiple closed
paths. Each path may consist of a different number of seg-

ments that are either straight line segments or Bézier curve
segments. The SVG canvas is of size 256×256 in this stage.
The contour refinement for each glyph lasts for 200 steps.
We set λreg = 10−6 for refinement.

Pruning Prior to the refinement, we first prune the paths
{C1, C2, ..., CK} on the contour. Let S(·) denote the area.
We remove Ci that satisfies S(Ci) < 50.

Simplification There are three different simplification
strategies. (a) For every 50 iteration steps, we replace seg-
ments that are too short (with length < 3) with the aver-
age of their start and end points. (b) After that, we re-
place the Bézier curves (a, b, c) with a⃗c if ∠abc > 171◦.
(c) After 150 iterations, we join the adjacent segments if
they could be replaced by a single segment without losing
many details. To be concrete, we join two adjacent line
segments if they are at an angle greater than 175◦. For
adjacent Bézier curves, we first convert them to the im-
plicit quadratic curve form. The differences between the
coefficients of the implicit curves can roughly reflect their
proximity. If ||e1 − e2||2 is less than 0.02 where e1, e2 are
their normalized coefficients respectively, we consider them
close enough and join them.

Subdivision After 50 iterations, we split Bézier curves
with a length greater than 25.6 (10% of the canvas width)
at their midpoints.

In Fig. 1, we show an example of the refinement process,
including how the loss changes with the iteration step, the
strategy adopted at certain times, and the intermediate re-
sults. The figure illustrates that our contour refinement step
can improve the quality and representation efficiency of the
contours.

1

Table 1. The architecture of the image encoder E , Ef and the decoder DI , which is similar to that presented in [1]. The non-linear activation,
Swish [5], is omitted. The input shape to the image encoder is 1× 128× 128.

Module Block/Layer Output Shape

Encoder E , Ef

Conv2D 16× 128× 128
Residual Block + Downsample Block 16× 64× 64
Residual Block + Downsample Block 32× 32× 32

Residual Block + Attention Block + Downsample Block 32× 16× 16
Residual Block + Downsample Block 64× 8× 8
Residual Block + Downsample Block 64× 4× 4
Residual Block + Downsample Block 128× 2× 2
Residual Block + Downsample Block 256× 1× 1

Residual Block 256× 1× 1

Decoder DI

Conv2D 256× 1× 1
Residual Block + Upsample Block 256× 2× 2
Residual Block + Upsample Block 128× 4× 4
Residual Block + Upsample Block 128× 8× 8
Residual Block + Upsample Block 64× 16× 16
Residual Block + Upsample Block 64× 32× 32
Residual Block + Upsample Block 32× 64× 64

Residual Block + Attention Block + Upsample Block 32× 128× 128
Residual Block + Upsample Block 16× 256× 256

Residual Block 16× 256× 256
GroupNorm + Conv2D 1× 256× 256

B. Unsigned Distance Field Warm-Up

In Fig. 2, we illustrate how the UDF warm-up strategy
could help the optimization of the dual part parameters. In
this case, we optimize a randomly initialized dual part to a
letter ‘O’ using different losses. The figure shows that us-
ing the pixel loss between the rendered image obtained by
DiffVG [3] and the target or the loss LP based on a dif-
ferentiable occupancy field will yield similar results. This
is because both losses can only produce gradients near the
edges of the shape. When shapes fall into a hole, the losses
tend to shrink the positive path and expand the negative path
until they produce an entirely white solid shape. The UDF
loss Lu can drive the shape to the approximately correct
position so that it does not fall into local minima, produc-
ing results with minimal error. Therefore, we claim that the
UDF warm-up will help with the initialization of dual parts
in the early stage of training.

C. Font Sampling and Interpolation Results

We show more font sampling results in Fig. 4 in SVG
format. Also, we provide font interpolation results in Fig. 5.
The fonts at both ends of the interpolation are also generated
by DualVector. We obtain intermediate results by perform-
ing linear interpolation in the latent space of the font style
codes. We also provide in the attachment files some True-

Type fonts which can be installed on the computer to display
in various text editors. They are converted from DualVec-
tor’s SVG results.

D. Metric for Vector Fonts
Evaluating the quality of synthetic fonts based on metrics

in the vector domain is valuable. But designing a reasonable
metric on vector graphics remains an open problem and is
worth investigating. Here we devise a Chamfer-Distance-
style metric between two vector glyphs. Suppose the two
glyphs have contours U, V on the unit square canvas, we
uniformly sample n points {ui}ni=1 on U and calculate their
average distance to V and vice versa. The “vector distance”
between U, V is defined as

dV D(U, V) =
1

n

n∑
i=1

min
v∈V

||ui−v||2+
1

n

n∑
i=1

min
u∈U

||vi−u||2

We evaluate the metric (n = 100) for both font reconstruc-
tion and generation tasks (Tab. 2). DualVector achieves the
best fit in terms of contouring.
E. Compact and Topologically Correct Vector

Fonts
DualVector learns the shape decomposition from only

glyph images and achieves compact vector font synthe-
sis. But DeepVecFont [6] may produce results with wrong
topologies even with vector supervision. The difference is

Figure 1. An example of the refinement process. We plot the loss Lrefine as a function of iteration steps. The operations are marked
near the timeline with different colors. We also show the contour along with the endpoints and control points throughout the refinement.
We record the number of lines and curves of the contour under each intermediate result to illustrate how the composition of the contour
changes as the refinement goes on.

Table 2. Evaluation of the “vector distance” metric for the font
reconstruction and generation tasks.

Method dV D(recon)↓ dV D(generation)↓
Ours 0.0082 0.0346

DeepVecFont - 0.0491
Multi-Implicits 0.0170 0.0395

Im2Vec 0.0473 0.0658

that DeepVecFont [6] predicts the glyph contour directly, in-
cluding the type and parameters of SVG commands, which
are both predicted by the network. If the SVG command
prediction is wrong, it will easily produce unwanted or self-

intersecting curves. DualVector, on the other hand, sepa-
rates shape prediction and SVG production, decreasing the
difficulty. It outputs the parameters of dual parts and calcu-
lates the contour later. The contour calculation and refine-
ment can avoid self-intersection and decide the type of SVG
elements for each segment, respectively. We show a typical
example in Fig. 3. DeepVecFont [6] relies on the robustness
of the network to ensure that the topology is reasonable.
Our method eliminates the possibility of self-intersection by
a deterministic contour calculation. In this way, DualVector
produces a more compact vector glyph.

Init

Target

DiffVG [3]

Ours LP

Ours LP +Lu

Iter 1 Iter 5 Iter 50 Iter 200

0.152 0.148 0.148 0.148

0.149 0.148 0.148 0.148

0.154 0.127 0.018 0.009
0.344 0.185 0.012 0.007

Figure 2. A comparison between the pixel loss of DiffVG [3], our occupancy loss in Eq.(10) in the main paper, and our occupancy loss
with UDF warm-up. We optimize a randomly initialized dual part with 6 Bézier curves in the positive and negative parts with the above
three losses. We plot the dual part at the 1st, 5th, 50th, and 200th iteration steps. The positive path is solid and the negative one is drawn
with dashed lines. We also mark the mean square error between the rendered image and the target and the UDF warm-up loss Lu under
each dual part.

Ours

Ours

Ours

Ours Ours Ours

Ours

DeepVecFont

Dual Parts Initial ∂O Vector Glyph

Initial SVG Vector Glyph

Figure 3. A comparison between our method and DeepVecFont [6]
in the process of synthesizing vector fonts. We produce dual parts
and then calculate and simplify contours, while DeepVecFont [6]
predicts the contours directly and refines them later.

F. Dual Part Correspondence

In Fig. 6, we show the results of reconstructing several
different styles of glyphs of the same letter with dual parts.
We observe that the same dual part usually carries a single
semantic meaning when representing the same letter in dif-

ferent styles, for example, the third part (green) focuses on
reconstructing the lower part of its right vertical line when
representing ‘M’. The correspondence established by our
method through dual parts is positive for downstream tasks
such as interpolation or generation. To further illustrate the
effect of such correspondence, we show the results of inter-
polating their dual parts between two styles of the same let-
ter in Fig. 7. The correspondence between dual parts makes
the interpolation very smooth, indicating the good proper-
ties of glyphs’ latent space, which is why DualVector can
generate high-quality glyphs.

References
[1] Patrick Esser, Robin Rombach, and Björn Ommer. Taming

transformers for high-resolution image synthesis. In IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2021, virtual, June 19-25, 2021, pages 12873–12883.
Computer Vision Foundation / IEEE, 2021. 1, 2

[2] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, pages 1–15, 2015. 1

[3] Tzu-Mao Li, Michal Lukác, Michaël Gharbi, and Jonathan
Ragan-Kelley. Differentiable vector graphics rasterization

for editing and learning. ACM Trans. Graph., 39(6):193:1–
193:15, 2020. 2, 4

[4] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradi-
ent descent with warm restarts. In ICLR (Poster). OpenRe-
view.net, 2017. 1

[5] Prajit Ramachandran, Barret Zoph, and Quoc V Le.
Swish: a self-gated activation function. arXiv preprint
arXiv:1710.05941, 7(1):5, 2017. 2

[6] Yizhi Wang and Zhouhui Lian. Deepvecfont: synthesizing
high-quality vector fonts via dual-modality learning. ACM
Trans. Graph., 40(6):265:1–265:15, 2021. 1, 2, 3, 4

Figure 4. New fonts generated by DualVector in SVG format.

Figure 5. Font examples with linear interpolated styles in the latent space.

Figure 6. Different styles of the letter ‘M’ are formed by dual parts with correspondence.

Figure 6. Different styles of the letter ‘R’ are formed by dual parts with correspondence.

Figure 6. Different styles of the letter ‘o’ are formed by dual parts with correspondence.

Figure 7. The interpolation of dual parts between two styles of ‘A’.

Figure 7. The interpolation of dual parts between two styles of ‘U’.

	. Implementation Details
	. Network Architecture and Evaluation
	. Contour Refinement

	. Unsigned Distance Field Warm-Up
	. Font Sampling and Interpolation Results
	. Metric for Vector Fonts
	. Compact and Topologically Correct Vector Fonts
	. Dual Part Correspondence

