
EfficientViT: Memory Efficient Vision Transformer with
Cascaded Group Attention

———– Supplementary Material ———–

Xinyu Liu1,∗ , Houwen Peng2, Ningxin Zheng2, Yuqing Yang2, Han Hu2, Yixuan Yuan1

1 The Chinese University of Hong Kong, 2 Microsoft Research
1155195604@link.cuhk.edu.hk, {houwen.peng, ningxin.zheng, yuqing.yang, hanhu}@microsoft.com, yxyuan@ee.cuhk.edu.hk

This supplementary material presents additional details
of Section 2.1, 2.3, 4.2, and 4.3. Besides, extra experiments
show that EfficientViT can be further accelerated using au-
tomatically searched kernel with TVM [3].

• Runtime Profiling on Subnetworks. We present the
runtime profiling of subnetworks in Sec. 2.1.

• Parameter Efficiency Analysis for DeiT-T. We pro-
vide the results of using Taylor pruning [10] on DeiT-
T [14] for parameter efficiency analysis in Sec. 2.3.

• Comparison on Mobile Chipsets. We deploy our
model on Apple A13 Bionic chip in iPhone 11 with
CoreML [1], and compare with other efficient models
designed for mobiles in Sec. 4.1.

• Instance Segmentation. We present results on COCO
instance segmentation benchmark [7] and compare
with other efficient models in Sec. 4.2.

• Further Acceleration with TVM. We apply auto-
matic kernel optimization with TVM [3] and show that
EfficientViT can be further accelerated.

A. Runtime Profiling on Subnetworks
We perform runtime profiling for subnetworks in Sec.

2.1 in the main manuscript, and present the results of Swin-
T-1.25×, Swin-T-1.5×, DeiT-T-1.25×, and DeiT-T-1.5× in
Fig. 1, 2, 3, and 4, respectively. It is observed that under a
similar inference throughput, the subnetworks with smaller
proportions of MHSA layers tend to have less time con-
sumption on memory-bound operations. The results further
validate that reducing the utilization ratio of MHSA layers
appropriately can enhance memory efficiency.

B. Parameter Efficiency Analysis for DeiT-T
To further study the parameter redundancy in vision

transformers in Sec. 2.3, we also adopt Taylor structured

pruning [10, 15] to automatically find the important mod-
ules in DeiT-T [14]. The ratios between the remaining out-
put channels to the input embedding dimensions are plotted
in Fig. 5, and the original ratios in the unpruned model are
also given for reference. Similar to the pruning results of
Swin-T in Sec. 2.3, we observe that the Q,K dimensions are
largely trimmed, whereas V prefers relatively large chan-
nels, being close to the input embedding dimension. The
only difference is that the FFNs in DeiT-T are less likely
to get pruned, which demonstrates that the channel redun-
dancy in the isomorphic structure may be less significant
than in the hierarchical structure. Meanwhile, it is shown
that the model tends to preserve more channels in FFN than
MHSA, which suggests the importance of channel commu-
nication in vision transformers, and may further reflect the
effectiveness of the proposed sandwich layout design.

C. Comparison on Mobile Chipsets
To test the performance on mobile devices, we deploy

the proposed EfficientViT on the mobile chipset, i.e., Ap-
ple A13 Bionic chip in iPhone 11, and provide the results
in Tab. 1. We compare our EfficientViT with other ef-
ficient models that were designed for mobiles, including
MobileViT [9] and MobileNetV3 [6]. CoreMLTools [1] is
used for the deployment. Compared to MobileViT-XXS,
EfficientViT-M2 runs 2.3× faster with 1.8% higher accu-
racy. Compared to the state-of-the-art efficient CNN Mo-
bileNetV3, EfficientViT-M4 has comparable accuracy yet
runs 9.7% faster, and achieves 1.9% higher accuracy when
trained for 1,000 epochs with distillation as in Sec. 4.4. The
results demonstrate the proposed design is efficient across
different deployment platforms.

D. Instance Segmentation
We use Mask R-CNN [5] with FPN for instance segmen-

tation task on COCO [7], and train the models for 12 epochs
(1× schedule) with the same settings as [8] on MMdetec-

1



Figure 1. Runtime profiling of different subnetworks of Swin-T with 1.25× acceleration. Red text denotes memory-bound operations. The
percentages below the figures denote the MHSA layer proportions.

Figure 2. Runtime profiling of different subnetworks of Swin-T with 1.50× acceleration. Red text denotes memory-bound operations. The
percentages below the figures denote the MHSA layer proportions.

Figure 3. Runtime profiling of different subnetworks of DeiT-T with 1.25× acceleration. Red text denotes memory-bound operations. The
percentages below the figures denote the MHSA layer proportions.

Figure 4. Runtime profiling of different subnetworks of DeiT-T with 1.50× acceleration. Red text denotes memory-bound operations. The
percentages below the figures denote the MHSA layer proportions.

tion [2]. Specifically, to adapt the 3 backbone features with
strides 16, 32, and 64 in EfficientViT to FPN, we apply 2 de-
convolutions on the stride 16 feature to generate 2 additional
features with strides 8 and 4. Then, these 5 features are fed
to the FPN. We compare EfficientViT-M4 with other effi-
cient models and present the results in Tab. 2. Compared to
MobileNetV2, our EfficientViT-M4 uses comparable Flops
yet achieves 3.2% higher APb and 3.8% higher APm, re-
spectively. Compared to the prevailing searched efficient
model EfficientNet-B0, our model surpasses it by 0.9% in

APb and 1.6% in APm, while using 42.47% fewer Flops,
demonstrating the transfer ability of the proposed model.

E. Further Acceleration with TVM

To further accelerate the proposed EfficientViT on CPU,
we propose to apply automatic kernel optimization with
TVM [3], and show the results in Tab. 3. With the automat-
ically searched kernel, the proposed models further show
remarkable throughput improvements. e.g., the throughput
of EfficientViT-M1 is increased by 71.4% on an Intel Xeon



Figure 5. The ratio of the channels to the input embeddings before
and after pruning DeiT-T [14]. Baseline accuracy: 67.0%; pruned
accuracy: 59.6%.

Table 1. CoreML [1] performance of EfficientViT and other effi-
cient models designed for mobiles. The result in brackets is trained
for 1,000 epochs with distillation.

Model Top-1 (%) Latency (ms) Flops (M) Params (M)

MobileViT-XXS [9] 69.0 12.03 410 1.3
MobileViT-XS [9] 74.7 23.01 986 2.3
MobileNetV3 [6] 75.2 7.43 217 5.4

EfficientViT-M2 70.8 5.23 201 4.2
EfficientViT-M4 74.3 (77.1) 6.71 299 8.8
EfficientViT-M5 77.1 8.64 522 12.4

Table 2. EfficientViT instance segmentation performance on
COCO val2017 [7] with comparisons to other efficient models.

Model
Mask R-CNN 1× Flops Params

APb APb
50 APb

75 APm APm
50 APm

75 (M) (M)

MobileNetV2 [11] 29.6 48.3 31.5 27.2 45.2 28.6 300 3.4
MobileNetV3 [6] 29.2 48.6 30.3 27.1 45.5 28.2 217 2.8
FairNas-C [4] 31.8 51.2 33.8 29.4 48.3 31.0 325 5.6
EfficientNet-B0 [13] 31.9 51.0 34.5 29.4 47.9 31.2 522 3.6
MNASNet-A1 [12] 32.1 51.9 34.2 29.7 49.0 31.4 312 3.9
EfficientViT-M4 32.8 54.4 34.5 31.0 51.2 32.2 299 8.8

Table 3. CPU throughput of EfficientViT family without and with
TVM [3] kernel optimization.

Model
Top-1 Throughput (imgs/s)

(%) CPU CPU (TVM)

EfficientViT-M0 63.2 228.4 366.8 (+60.6%)
EfficientViT-M1 68.4 126.9 217.5 (+71.4%)
EfficientViT-M2 70.8 121.2 182.0 (+50.2%)
EfficientViT-M3 73.4 96.4 142.2 (+47.5%)
EfficientViT-M4 74.3 88.5 126.0 (+42.4%)
EfficientViT-M5 77.1 56.8 78.5 (+38.2%)

E5-2690 v4 @ 2.60 GHz processor. The results demonstrate
the potential of EfficientViT in achieving much faster infer-
ence speed with the optimization of the kernel functions.

References
[1] Apple. Coremltools: Use coremltools to convert machine

learning models from third-party libraries to the core ml for-
mat, 2021. 1, 3

[2] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, et al. Mmdetection: Open mmlab detection tool-
box and benchmark. arXiv preprint arXiv:1906.07155, 2019.
2

[3] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng,
Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang,
Yuwei Hu, Luis Ceze, et al. TVM: An automated End-to-
End optimizing compiler for deep learning. In OSDI, pages
578–594, 2018. 1, 2, 3

[4] Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Fairnas: Re-
thinking evaluation fairness of weight sharing neural archi-
tecture search. In ICCV, pages 12239–12248, 2021. 3

[5] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In ICCV, 2017. 1

[6] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In ICCV, 2019. 1, 3

[7] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In
ECCV, 2014. 1, 3

[8] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, 2021. 1

[9] Sachin Mehta and Mohammad Rastegari. Mobilevit: Light-
weight, general-purpose, and mobile-friendly vision trans-
former. In ICLR, 2021. 1, 3

[10] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,
and Jan Kautz. Importance estimation for neural network
pruning. In CVPR, pages 11264–11272, 2019. 1

[11] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In CVPR, pages 4510–4520,
2018. 3

[12] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In CVPR, pages 2820–2828, 2019. 3

[13] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In ICML, 2019. 3

[14] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In ICML. PMLR, 2021. 1, 3

[15] Huanrui Yang, Hongxu Yin, Pavlo Molchanov, Hai Li, and
Jan Kautz. Nvit: Vision transformer compression and param-
eter redistribution. arXiv preprint arXiv:2110.04869, 2021.
1


	. Runtime Profiling on Subnetworks
	. Parameter Efficiency Analysis for DeiT-T
	. Comparison on Mobile Chipsets
	. Instance Segmentation
	. Further Acceleration with TVM

