A. Implementation Details

We give more implementation details in the main paper of
the “comparison with the task-specific methods” and ~’com-
parison with the efficient tuning methods”.

Basic Setting. Our method contains a backbone for feature
extraction and a decoder for segmentation prediction. We
initialize the weight of the backbone via ImageNet classifica-
tion pre-training, and the weight of the decoder is randomly
initialized. Below, we give the details of each variant.

Full-tuning. We follow the basic setting above, and then,
fine-tune all the parameters of the encoder and decoder.

Only Decoder. We follow the basic setting above, and
then, fine-tune the parameters in the decoder only.

VPT [33]. We first initialize the model following the basic
setting. Then, we concatenate the prompt embeddings in
each transformer block of the backbone only. Notice that,
their prompt embeddings are implicitly shared across the
whole dataset. We follow their original paper and optimize
the parameters in the prompt embeddings and the decoder.

AdaptFormer [4]. We first initialize the model following
the basic setting above. Then, the AdaptMLP is added to each
transformer block of the backbone for feature adaptation.
We fine-tune the parameters in the decoder and the newly
introduced AdaptMLP.

EVP (Ours). We also initialize the weight following the
basic setting. Then, we add the explicit prompting as de-
scribed in the main paper of Figure 3.

Metric. AUC calculates the area of the ROC curve. ROC
curve is a function of true positive rate (#) in terms

of false positive rate.(ffﬁ)., where tp, z?n, fp, fn reprej-
sent the number of pixels which are classified as true posi-
tive, true negative, false positive, and false negative, respec-
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0.3. MAE computes pixel-wise average distance. Weighted
F-measure (Fg’ ) weighting the quantities TP, TN, FP, and
FN according to the errors at their location and their neigh-
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measure (F4) jointly considers image statistics and local
pixel matching: By = wogg S, Zle bs(i, ), where
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¢s is the alignment matrix depending on the similarity of
the prediction and ground truth.

Training Data. Note that most forgery detection meth-
ods (ManTraNet [76], SPAN [26], PSCCNet [48], and
ObjectFormer [74] in Table 4) and one shadow detection
method (MTMT [5] in Table 3) use extra training data to get
better performance. We only use the training data from the
standard datasets and obtain SOTA performance.

B. More Results

We provide more experimental results in addition to the
main paper.

B.1. High-Frequency Prompting

Our method gets the knowledge from the explicit content
of the image itself, hence we also discuss other similar ex-
plicit clues of images as the prompts. Specifically, we choose
the common-used Gaussian filter, the noise-filter [20], the
all-zero image, and the original image as experiments. From
Table B11, we find the Gaussian filter shows a better perfor-
mance in defocus blur since it is also a kind of blur. Also,
the noise filter [20] from forgery detection also boosts the
performance. Interestingly, we find that simply replacing
the original image with an all-zero image also boosts the
performance, since it can also be considered as a kind of
implicitly learned embeddings across the full dataset as in
VPT [33]. Differently, the high-frequency components of the
image achieve consistent performance improvement to other
methods on these several benchmarks.

B.2. HFC v.s. LFC

We conduct the ablation study on choosing of high-
frequency features or the low-frequency features in Ta-
ble B12. From the table, using the low-frequency compo-
nents as the prompting just show some trivial improvement
on these datasets. Differently, the high-frequency compo-
nents are more general solutions and show a much better
performance in shadow detection, forgery detection, and
camouflaged detection. Similar to the Gaussian filter as we
discussed above, the LFC is also a kind of blur, which makes
the advantage of LFC in the defocus blur detection.

B.3. Mask Ratio

We further evaluate the hyper-parameter mask ratio 7
introduced in Section 3.1. From Table B12, when we mask
out 25% of the central pixels in the spectrum, it achieves
consistently better performance in all the tasks. We also find
that the performance may drop when the increasing of mask
ratio (all 0 images), especially in shadow detection, forgery
detection, and camouflaged object detection.



Defocus Blur Shadow Forgery Camouflaged
Method CUHK [67] ISTD [73] | CASIA [12] CAMO [43]

Fgt MAE| BER | Fi1t AUCT | SoT Est
Gaussian Blur | .928 .046 1.52 .631 .860 842 893
Noise Filter 923 .046 1.47 .637 .866 843 894
All 0 Image 922 .047 1.45 .630 .862 .844 895
Original 922 .047 1.59 .630 .860 .840  .891
HEC 928 045 1.35 .636 .862 846  .895

Table B11. Ablation on the explicit visual prompting with other relatives. We compare with the widely-used image filter as prompting to
verify the effectiveness of the proposed HFC.

Mask | Defocus Blur Shadow Forgery Camouflaged
Method Ratio CUHK [67] ISTD [73] | CASIA [12] CAMO [43]
T(%) | F3T MAE] BER | Fi1t AUCT | SoT Es?
Low Frequency Components (LFC) with FFT
LFC* 0 922 047 1.45 630 .862 .844 895
LFC 10 927 046 1.58 .631 .862 .845  .895
LFC 25 924 047 1.49 .630  .860 842 891
LFC 50 923 .048 1.48 .630  .860 .841  .893
LFC 75 924 048 1.56 627 .859 .840  .894
LFC 90 925 046 1.47 626 859 .841  .89%4
LFC** 100 | .922 047 1.59 .630  .860 .840  .891
High Frequency Components (HFC) with FFT
HFC 10 926 046 1.60 .631 .854 .843  .894
HFC 25 928 .045 1.35 636  .862 846  .895
HFC 50 925 047 1.51 .631 .862 .843 894
HFC 75 923 .048 1.52 629 858 842 .892
HFC 90 .924 .047 1.49 .630  .861 842 .893

Table B12. Ablation on HFC, LFC, and mask ratio 7. Leveraging FFT to extract high-frequency components consistently outperforms LFC.
*LFC (7=0) equals to a full zero image for prompting. **LFC (7=100) means we learn an embedding from the original input image directly.

C. Additional Visual Results

We give more visual results of EVP and other task-
specific methods on the four tasks in Figure C6, C7, C8,
and C9 as supplementary to the visual results in the main

paper.
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(a) Input (b) GT (c) Ours (d) ManTraNet (e) SPAN

Figure C6. More results on CAISA [12] dataset for forgery detection. We compare to ManTraNet [76] and SPAN [26].
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(a) Input (b) GT (c) Ours (d) DSD (e) MTMT (f) FDRNet

Figure C7. More results on ISTD [73] dataset for shadow detection. We compare to DSD [80], MTMT [5], FDRNet [90].
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(a) Input (b) GT (¢c) Ours (d) BTBNet (e) CENet (f) EFENet

Figure C8. More results on CUHK [67] dataset for defocus blur detection.We compare to BTBNet [82], CENet [83] and EFENet [79].
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(a) Input (b) GT (c) Ours (d) SINet (e) PFNet (f) JcoD (g) RankNet

Figure C9. More results on CAMO [43] dataset for camouflaged object detection. We compare to SINet [15], PENEt [54], JCOD [44] and
RankNet [51].
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