
Appendix: Exploring the Relationship between Architectural Design and
Adversarially Robust Generalization

Aishan Liu1, Shiyu Tang1, Siyuan Liang2, Ruihao Gong1,6, Boxi Wu3,
Xianglong Liu1,4,5, Dacheng Tao7

1Beihang University, 2Chinese Academy of Sciences, 3Zhejiang University,
4Zhongguancun Laboratory, 5Hefei Comprehensive National Science Center,

6SenseTime, 7JD Explore Academy

1. Theoretical Proof
We prove Theorem 1 by unpacking the upper bound of

a simple transformer, which is similar to a two-layer neural
network in the paper [4]. The simple transformer consists of
two fundamental blocks fθ(x) = W1ϕ(A1x), where A1

and W1 respectively denotes the Mutil-head Self-Attention
layer module and the Multi-Layer Perception layer module,
which are connected with a non-linear activation function
ϕ. Generally speaking, a Mutil-head Self-Attention A1 =
SoftMax(QK⊤/

√
d +B)V is non-linear layer due to the

existence of the non-linear activation function SoftMax.
We can bound the ℓ1 norm of the gradient of the trans-

former in the adversarial training, denoted as ||f ′

θ(x+δ)||1.
Due to the existence of non-linear activation functions, the
activation derivatives ϕ

′
(A

′

1(x + δ)) will depend on the
adversarial example if we apply the chain rule. In some
cases, the Mutil-head Self-Attention layer can be replaced
with the approximate linear layer to settle the computational
complexity brought from the dimension of the input image
[3,5,7]. To remove the dependence on the adversarial exam-
ple, we can optimize over possible activation derivatives s
for the activation layer because ∀z ∈ R, ϕ′

(z) ∈ [0, 1]m.
Thus, the upper bound of the ℓ1 norm of gradient from
the [4] remains unchanged:

||fθ(x+ δ)||1 = ||A⊤
1 diag(W1)ϕ

′
(A

′

1(x+ δ))||1
≤ max

s∈[0,1]m
||A⊤

1 diag(W1)s||1

= max
s∈[0,1]m,t∈[−1,1]d

t⊤A⊤
1 diag(W1)s,

(1)

where the identity ||z||1 = maxt∈[−1,1]d t
⊤z.

Based on satisfying the Eq. 1, we can directly use the
generalization upper bound in the multi-class model, i.e.,
the SDP upper bound [4]. Then the generalization to multi-

The first three authors contribute equally. Corresponding author: Xi-
anglong Liu, xlliu@buaa.edu.cn.

class is:

f ij
θ (x+ δ) ≤ f ij

SDP (x)+
ϵ

4
max

P⪰0,diag≤1
⟨Qij(W1,A1),P ⟩,

(2)
where f ij is the margin between class i with class j.

Thus, we can easily prove Theorem 1 according to the
generalization bound for surrogate adversarial loss [8]. We
define MF = {(x,y) 7→ M(fθ(x),y) : fθ ∈ F} and M
denotes the margin loss, then we have:

P(x,y)∼S{∃δ ∈ B(ϵ), s.t. y ̸= argmax[fw(x+ δ)]y′}

≤ 1

γ
(RS(MF)+

ϵ

2n
Eσ[supfθ∈F

n∑
i=1

σi max
k∈[K],z=±1

max
P⪰0,diag≤1

⟨zQ(w1,k,A1),P ⟩].

(3)
Since we have ∥ A1 ∥p≤ s1, ∥ W1 ∥p≤ s2, ∥ A1 ∥1≤
b1, ∥ W1,1 ∥1≤ b2, we can apply the Rademacher com-
plexity and obtain:

RS(MF ≤ 4

n
3
2

+
60 log(n) log(2dmax)

n
s1s2((

b1
s1

)2/3+

(
b2
s2

)2/3)3/2 ∥ X ∥F .

(4)

Next, based on Khintchine’s inequality, Holder’s in-
equality, the definition of Q(,), and ||W1||∞ ≤ b2, we can
obtain the upper bound of the second term in Eq. 3 as fol-
lows:

ϵ

2n
Eσ[supfθ∈F

n∑
i=1

σi max
k∈[K],z=±1

max
P⪰0,diag≤1

⟨zQ(w1,k,A1),P

⟩] ≤ 2ϵb1b2√
n

.

(5)

Bringing Eq. 4 and Eq. 5 into Eq. 3, Theorem 1 is proved.

2. Detailed Experiment Setup

We conduct comprehensive experiments to verify our
conclusions. All of our experiments are running on Nvidia
GTX 1080Ti GPU for about 0.4 GPU years since most of
the experiments contain adversarial training which is time-
consuming. We also release our code for experiments,
which is under Apache License 2.0. All used datasets and
code in the experiment are downloaded from the official or
other open-source releases. We report the detailed experi-
ment setup as follows.

2.1. Model architectures

Specifically, on ImageNette, for CNNs we use ResNet-
50, ResNeXt-50-32x4d, WideResNet-50-2, PreActResNet-
50, VGG-16, and DenseNet-201; for Transformers we use
ViT-S/16, Mixer-S/16, PoolFormer-S24, Swin-T, ViTAE-
S, CCT-14/7x2, MobileViT-S, CPVT-S, BoTNet-50, CeiT-
T, CoAtNet-1, CvT-13, LeViT-256, and PVTv2-B2. On
CIFAR-10, since many architectures do not provide official
implementation on CIFAR-10, we mainly use the unofficial
implementation code in github .

2.2. Training settings

To avoid the influence of different training techniques
(e.g., data augmentation, weight average) on adversarially
robust generalization, we use the aligned training settings
for all models in adversarial training. Specifically, on
CIFAR-10 dataset, we use AutoAugment (CIFAR-10 pol-
icy) as data augmentation for all models; for the optimizer,
we use AdamW with weight decay=0.05; for the scheduler,
we use cosine scheduler with learning rate warm-up in the
first 8 epochs; we set lr=0.001 for all CNNs and lr=0.00025
for some of the Transformers; for batch size and epochs
we set bs=128 and epoch=100 for all models; for adver-
sarial training, we set ϵ=8/255, steps=15 and step size= ϵ

10 .
On ImageNette dataset, we use standard ImageNet data
augmentation which contains random resized crop, random
horizontal flip, and color jitter since strong augmentation
(e.g., AutoAugment, Mixup) on ImageNet would make it
hard for adversarial training to converge [1, 6]; for the opti-
mizer, we also use AdamW with weight decay=0.05; for the
scheduler, we also use cosine scheduler with warmup; for
all models, we set batch size=128 and training epoch=100;
for adversarial training, we set ϵ=8/255, steps=20 and step
size= ϵ

15 .

3. Additional Experiment Results

In this section, we provide more evaluation results.

https : / / github . com / pprp /
pytorch-cifar-model-zoo

3.1. Adversarially robust generalization evaluation
on other datasets

ImageNette. We first report the adversarially robust
generalization results for 20 architectures on ImageNette
dataset, as shown in Table 1. Although the results for some
specific architectures are slightly different, the main conclu-
sions keep consistent with the results on CIFAR-10. Gener-
ally speaking, Transformers show better robust generaliza-
tion (e.g., PVTv2), while CNNs (e.g., ResNet and its vari-
ants) also tend to overfit the trained ℓ∞ adversarial noises
and show bad robust generalization on PGD-ℓ2 and PGD-
ℓ1 adversarial noises.

ImageNet. We conduct PGD-ℓ∞ adversarial training
(ϵ=4/255) on ImageNet, and the selected models are ViT
and ResNet-101. We evaluate the adversarially robust gen-
eralization of the two adversarially-trained models under
different attack norms and attack methods, including PGD-
ℓ1, PGD-ℓ2, PGD-ℓ∞, and AA-ℓ∞. The experimental set-
tings are kept the same as those in the main paper. In Table
2, we found that the generalization trend of model adversar-
ial training is not much different from other datasets. Mean-
while, as the number of samples in the data set increases,
though the Transformer still has an advantage over CNN on
adversarially robust generalization, the advantage gradually
shrinks.

CIFAR-100. We then conduct PGD-ℓ∞ adversarial
training (ϵ=8/255) on CIFAR-100. The experimental set-
tings are similar to our main experiment in the main paper.
Specifically, we choose some representative architectures
including PVTv2, CoAtNet, ViT, ResNet, WideResNet, and
CvT. As shown in Table 3, the adversarially robust gen-
eralization on CIFAR-100 shows a similar tendency with
those on CIFAR-10 and ImageNette. PVTv2 and CoAtNet
have the best adversarially robust generalization ability and
CNNs (ResNet and WideResNet) also tend to overfit the
trained PGD-ℓ∞ noises and have bad robust generalization.

3.2. Adversarially robust generalization using
TRADES

Similar to the standard PGD-ℓ∞ adversarial training ex-
periment, we also conduct adversarial training on 20 ar-
chitectures using TRADES, which is one of the state-of-
the-art adversarial training techniques. Specifically, for all
models, we set ϵ=8/255, steps=15, step size= ϵ

10 , and we set
the trade-off regularization parameter beta=6.0. Results on
CIFAR-10 are shown in Table 4. We can observe that com-
pared to standard PGD-ℓ∞ adversarial training, TRADES
indeed largely improve the robust generalization for most
of the architectures (e.g., 14.32 → 21.62 for the worst-case
robust accuracy of ResNet). As for the robust generaliza-
tion of different architectures, the evaluation results under
TRADES is much similar to those under standard PGD-ℓ∞
training, indicating that the adversarially robust generaliza-

https://github.com/pprp/pytorch-cifar-model-zoo
https://github.com/pprp/pytorch-cifar-model-zoo

Table 1. Evaluation results for all model architectures on ImageNette dataset. We set ϵ = 8/255 for PGD-ℓ∞ adversarial training, and
ϵ = 8/255, 8.0, 1600.0 for PGD-ℓ∞, ℓ2 and ℓ1 testing. Results are ranked by the worst-case robust accuracy.

PGD-ℓ∞ Adversarial Training
Architecture Params (M) Vanilla Acc Clean Acc PGD-ℓ∞ AA-ℓ∞ PGD-ℓ2 PGD-ℓ1 Worst-case Acc

PVTv2 23.11 89.73 85.41 63.63 58.53 57.05 56.39 52.68
ViTAE 22.81 90.04 88.59 63.58 58.03 54.34 53.23 50.31
CvT 17.58 87.09 83.33 59.08 53.42 53.73 54.16 48.60
VGG 134.31 90.62 85.67 64.19 58.03 51.79 46.02 44.68
CoAtNet 39.41 92.60 89.62 64.08 57.84 50.28 45.94 43.89
BoTNet 18.92 91.36 86.41 61.13 53.39 48.49 45.94 42.73
CeiT 5.59 89.88 85.99 59.11 52.63 47.86 44.97 42.52
WideResNet 66.85 88.83 76.11 53.68 46.70 46.86 46.91 42.50
MLP-Mixer 17.32 82.99 78.80 47.49 39.88 44.54 49.15 38.88
CCT 21.98 88.94 82.91 51.60 43.57 43.94 44.99 37.78
Swin Transformer 27.52 84.62 72.80 48.10 42.25 38.25 34.46 32.41
PoolFormer 20.87 86.83 63.74 40.07 34.30 35.43 35.75 31.91
ViT 21.67 80.46 74.01 45.68 36.48 34.17 32.20 31.75
DenseNet 18.11 90.49 89.57 67.50 60.40 44.02 32.83 31.34
MobileViT 5.07 92.60 87.15 66.58 60.21 45.60 31.27 30.83
CPVT 20.32 82.06 76.85 47.91 41.41 35.57 31.93 30.04
LeViT 17.96 85.70 71.24 44.65 37.15 35.49 33.57 29.83
ResNeXt 23.00 84.96 80.17 57.74 51.10 35.96 21.80 21.53
PreActResNet 23.52 89.59 87.73 66.90 60.76 15.98 2.50 2.50
ResNet 23.08 91.25 81.77 60.68 54.29 6.68 0.21 0.21

Table 2. Adversarially robust generalization results on ImageNet
using PGD-ℓ∞ adversarial training for ViT and ResNet-101.

Architecture Clean Acc PGD-ℓ1 PGD-ℓ2 PGD-ℓ∞ AA-ℓ∞ Worst-case Acc

ViT 55.61 35.26 40.02 33.61 28.12 24.77
ResNet-101 61.16 33.81 37.61 31.09 25.24 20.08

Table 3. Adversarially robust generalization results on CIFAR-100
using PGD-ℓ∞ adversarial training. Results in each category are
ranked by the worst-case robust accuracy.

Architecture Clean Acc PGD-ℓ1 PGD-ℓ2 PGD-ℓ∞ AA-ℓ∞ Worst-case Acc

PVTv2 49.75 24.60 18.24 23.99 19.44 18.08
CoAtNet 52.06 22.92 17.38 24.74 20.38 17.09
ViT 51.67 20.69 15.51 22.80 18.84 14.92
ResNet 62.65 9.83 9.01 26.95 24.02 8.59
WideResNet 66.37 13.28 12.32 29.04 22.13 11.87
CvT 46.26 3.77 5.49 18.66 16.09 3.42

tion of architectures keeps consistent under different adver-
sarial training techniques. Specifically, Transformers and
hybrid models often achieve better adversarially robust gen-
eralization than CNNs, and PVTv2 and CoAtNet also ex-
hibit relatively the best generalization ability. For CNNs,
although TRADES mitigates the overfitting phenomenon
on the trained ℓ∞ noises, the robust generalization towards
PGD-ℓ1 and PGD-ℓ2 is still worse than Transformers.

3.3. Evaluations on different architectures under
optimal training settings

In our main paper, we report the results of all models
with the aligned training settings following [1, 6]. Here, we
further investigate adversarially robust generalization using
several representative architectures under optimal settings
on ImageNette (e.g., more data augmentations techniques
for Transformers and CNNs).

Since standard adversarial training on ImageNet with
strong data augmentation (e.g., AutoAugment, Mixup)
would be hard to converge [1, 6], we only use the standard
data augmentation techniques in our ImageNette adversar-
ial training. To verify our conclusions under the relatively
optimal settings on ImageNette, we choose 4 representa-
tive models (i.e., PVTv2, CoAtNet, ResNet, and WideRes-
Net) and conduct standard PGD-ℓ∞ adversarial training
(ϵ=8/255) with AutoAugment based on the standard setting.
Specifically, we propose a new warm-up strategy in which
we linearly increase the perturbation ϵ and PGD steps in the
first 20 epochs. In contrast to the warm-up strategy pro-
posed by [1] which gradually warmup the data augmenta-
tion strength, our warm-up strategy is easier to implement.
The robust generalization results are shown in Table 5. We
can see that the conclusions under the relatively optimal set-
ting are much similar to those under the adversarial training
on standard data augmentation.

Table 4. Adversarially robust generalization results on CIFAR-10 using TRADES adversarial training. Results in each category are ranked
by the worst-case robust accuracy.

TRADES-ℓ∞ Adversarial Training
Architecture Params (M) Vanilla Acc Clean Acc PGD-ℓ∞ AA-ℓ∞ PGD-ℓ2 PGD-ℓ1 Worst-case Acc

PVTv2 12.40 88.34 76.35 46.38 38.75 36.92 46.43 35.63
CPVT 9.49 90.34 78.30 46.55 38.86 34.63 43.64 33.53
ViT 9.78 86.73 77.92 48.13 41.07 34.43 41.79 33.50
CoAtNet 16.99 90.73 76.06 46.47 38.11 34.45 42.75 33.38
ViTAE 23.18 88.24 75.75 43.93 35.61 33.98 44.21 32.33
CCT 3.76 92.27 81.31 53.03 44.99 33.21 36.92 32.11
MobileViT 5.00 91.47 77.28 48.85 41.16 32.34 36.81 31.38
VGG 14.72 94.01 83.18 52.25 43.23 31.88 35.52 30.53
PoolFormer 11.39 89.26 73.95 45.34 37.44 30.30 36.02 29.67
Swin Transformer 27.42 91.58 79.67 51.34 44.18 30.54 34.02 29.24
WideResNet 55.85 96.47 84.67 59.89 52.72 29.36 32.60 28.12
MLP-Mixer 0.68 83.43 65.76 37.65 30.62 28.07 35.52 27.31
CeiT 5.56 85.24 72.39 37.11 28.97 26.89 34.38 26.10
BoTNet 18.82 94.16 79.50 52.06 43.80 28.50 28.54 26.01
DenseNet 1.12 94.42 80.50 52.86 44.77 27.28 26.57 24.48
PreActResNet 23.50 95.86 83.60 57.22 49.66 27.38 24.81 23.36
ResNeXt 9.12 95.64 80.98 55.43 47.77 26.51 23.09 22.06
ResNet 23.52 95.60 84.99 57.40 49.01 25.95 22.65 21.62
LeViT 6.67 89.01 75.85 46.35 38.70 21.71 19.48 18.85
CvT 19.54 87.81 74.16 42.43 35.52 16.23 12.43 12.23

Table 5. Evaluation results on ImageNette dataset using adversar-
ial training under optimal training setting.

PGD-ℓ∞ Adversarial Training
Architecture Vanilla Acc Clean Acc PGD-ℓ∞ AA-ℓ∞ PGD-ℓ2 PGD-ℓ1 PGD-ℓ∞
Worst-case Acc

PVTv2 92.04 90.62 67.21 61.95 60.55 60.92 56.50
CoAtNet 94.39 91.94 68.16 61.90 55.05 49.68 47.94
ResNet 93.60 84.83 62.71 55.00 18.45 4.60 4.58
WideResNet 93.62 88.54 67.56 59.63 21.27 5.71 5.68

3.4. Generalization on common corruptions

In our main paper, we discuss the generalization of
adversarially-trained models on common corruptions us-
ing CIFAR-10-C. Here, we further report the results on
ImageNette-C dataset.

As shown in Table 6, we can observe that as for the
generalization of adversarial training towards corruptions
on ImageNette, DenseNet behaves better than other Trans-
formers. However, other adversarially-trained CNNs (such
as ResNet) fail to show better generalization on corrup-
tion than Transformers (e.g., CoAtNet, ViTAE). We will put
them in future studies.

3.5. Improving the sparsity of Transformers

We choose two representative models PVTv2 and CoAt-
Net and conduct PGD-ℓ∞ adversarial training (ϵ=8/255) on
CIFAR-10 with (weight decay=0.05 in AdamW) and with-
out regularization on them to get different weight sparsities.

Table 6. Robust generalization for different models towards com-
mon corruptions on ImageNette dataset. For natural noises we
leverage mean Corruption Error (mCE) [2] and use 1-mCE as our
ImageNette-C Acc (the higher the better).

ImageNette Dataset
Vanilla Training PGD-ℓ∞ Training

Vanilla Acc ImageNette-C Acc Clean Acc ImageNette-C Acc

DenseNet 90.49 67.29 89.57 66.49
BoTNet 91.36 62.35 86.41 65.56
CoAtNet 92.60 65.17 89.62 64.82
PVTv2 89.73 67.50 85.41 64.70
ViTAE 90.04 67.81 88.59 64.40
CeiT 89.88 66.14 85.99 63.67
MobileViT 92.60 63.69 87.15 62.34
PreActResNet 89.59 63.59 87.73 62.21
CVT 87.09 61.72 83.33 61.89
VGG 90.62 63.34 85.67 61.78
MLP-Mixer 82.99 64.22 78.80 61.26
WideResNet 88.83 60.81 76.11 61.22
CCT 88.94 60.21 82.91 60.69
CPVT 82.06 65.95 76.85 60.68
ResNeXt 84.96 58.67 80.17 59.43
ResNet 91.25 63.10 81.77 57.79
ViT 80.46 61.17 74.01 56.17
Swin Transformer 84.62 53.62 72.80 52.92
LeViT 85.70 53.19 71.24 49.07
PoolFormer 86.83 56.08 63.74 43.32

The robust generalization results are shown in Table 7. We
can see that when decreasing the weight sparsity of PVTv2
and CoAtNet (PVTv2nodecay and CoAtNetnodecay , namely
without any weight decay regularization), their adversar-
ially robust generalization also becomes worse, which is
consistent with our conclusion that models exhibit better ad-

Table 7. Directly changing the weight sparsity of Transformers
during training by weight decay.

Architecture Clean Acc PGD-ℓ1 PGD-ℓ2 PGD-ℓ∞ AA-ℓ∞ Worst-case Acc

PVTv2 75.99 46.14 35.77 46.48 38.18 33.54
PVTv2nodecay 76.95 45.63 35.03 45.64 36.74 33.01
CoAtNet 77.73 42.30 33.80 48.27 39.85 32.17
CoAtNetnodecay 75.58 39.80 31.63 46.16 37.80 30.18

versarially robust generalization tend to have higher weight
sparsity. However, directly changing the weight sparsity of
Transformers (e.g., PVTv2) during training also decreases
the clean accuracy. We will further study this in the future.

3.6. Training/testing accuracy

To demonstrate that our adversarial-trained models do
not suffer from adversarial overfitting problems, we report
the robust training/testing accuracy on PGD-ℓ∞ attacks at
every ten epochs during adversarial training on CIFAR-10.
As shown in Figure 8, we can see that there seems no ob-
vious adversarial overfitting during the whole adversarial
training.

4. Weight Sparsity Understanding for More
Models

Here, we report more visualization results for model
weight sparsity as shown in Figure 1. From the results,
we can find that the weight distributions of Transformers
are often sparser than CNNs, which is consistent with our
conclusions. In addition, for Transformers that exhibit bad
robust generalization (e.g., CeiT, CvT), their weight distri-
butions are much denser than other Transformers; while for
architectures that have relatively good robust generalization
(e.g., ViT, CPVT), their weight distributions also exhibit
good sparsity.

Table 8. Robust training/testing accuracy during PGD-ℓ∞ adversarial training on CIFAR-10 at every 10 epoch. Results are shown in
“training/testing” accuracy.

Architecture/ Epoch 10 20 30 40 50 60 70 80 90 100

WideResNet 16.54 / 19.23 21.79 / 23.68 24.21 / 28.44 30.39 / 34.21 35.34 / 38.45 44.69 / 49.32 50.23 / 52.17 54.27 / 54.21 56.31 / 54.35 57.95 / 55.19
BotNet 9.56 / 9.47 12.94 / 17.00 23.23 / 29.71 18.04 / 22.81 30.84 / 37.37 35.65 / 40.56 39.41 / 44.79 40.09 / 45.57 42.38 / 46.72 43.79 / 47.64

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Weight Value

0

5

10

15

20

25

Fr
eq

ue
nc

y

Sparsity Ratio: 0.29

(a) PoolFormer

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Weight Value

0

5

10

15

20

25

Fr
eq

ue
nc

y

Sparsity Ratio: nan

(b) Swin Transformer

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Weight Value

0

5

10

15

20

25
Fr

eq
ue

nc
y

Sparsity Ratio: 0.67

(c) CPVT

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Weight Value

0

5

10

15

20

25

Fr
eq

ue
nc

y

Sparsity Ratio: 0.74

(d) ViTAE

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Weight Value

0

5

10

15

20

25

Fr
eq

ue
nc

y

Sparsity Ratio: 0.32

(e) CCT

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Weight Value

0

5

10

15

20

25

Fr
eq

ue
nc

y

Sparsity Ratio: 0.28

(f) LeViT

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Weight Value

0

5

10

15

20

25

Fr
eq

ue
nc

y

Sparsity Ratio: 0.40

(g) MobileViT

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Weight Value

0

5

10

15

20

25

Fr
eq

ue
nc

y
Sparsity Ratio: 0.77

(h) BoTNet

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Weight Value

0

5

10

15

20

25

Fr
eq

ue
nc

y

Sparsity Ratio: 0.22

(i) MLP-Mixer

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Weight Value

0

5

10

15

20

25

Fr
eq

ue
nc

y

Sparsity Ratio: 0.20

(j) CeiT

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Weight Value

0

5

10

15

20

25

Fr
eq

ue
nc

y

Sparsity Ratio: 0.14

(k) PreActResNet

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Weight Value

0

5

10

15

20

25

Fr
eq

ue
nc

y

Sparsity Ratio: 0.12

(l) ResNeXt

Figure 1. Weight distribution visualization for more adversarially-trained models on CIFAR-10.

References
[1] Y. Bai, J. Mei, A. L. Yuille, and C. Xie. Are trans-

formers more robust than cnns? Advances in Neural
Information Processing Systems, 34, 2021. 2, 3

[2] D. Hendrycks and T. Dietterich. Benchmarking neural
network robustness to common corruptions and pertur-
bations. In International Conference on Learning Rep-
resentations, 2018. 4

[3] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret.
Transformers are rnns: Fast autoregressive transformers
with linear attention. In International Conference on
Machine Learning, pages 5156–5165. PMLR, 2020. 1

[4] A. Raghunathan, J. Steinhardt, and P. Liang. Certified
defenses against adversarial examples. arXiv preprint
arXiv:1801.09344, 2018. 1

[5] Z. Shen, M. Zhang, H. Zhao, S. Yi, and H. Li. Efficient
attention: Attention with linear complexities. In Pro-
ceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision, pages 3531–3539, 2021.
1

[6] S. Tang, R. Gong, Y. Wang, A. Liu, J. Wang, X. Chen,
F. Yu, X. Liu, D. Song, A. Yuille, et al. Robustart:
Benchmarking robustness on architecture design and
training techniques. arXiv preprint arXiv:2109.05211,
2021. 2, 3

[7] Y.-H. H. Tsai, S. Bai, M. Yamada, L.-P. Morency, and
R. Salakhutdinov. Transformer dissection: A unified
understanding of transformer’s attention via the lens of
kernel. arXiv preprint arXiv:1908.11775, 2019. 1

[8] D. Yin, R. Kannan, and P. Bartlett. Rademacher com-
plexity for adversarially robust generalization. In Inter-
national conference on machine learning, pages 7085–
7094. PMLR, 2019. 1

