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In this supplementary material, experimental settings
and details of experimental datasets, as well as imitations
and future directions of this work are provided.

• Details of our further experimental settings in pre-
training including data augmentation and hardware
settings (see Section 1).

• Details of experimental datasets involved in pre-
training and testing of our proposed GFC (see Section
2).

• Limitations and future directions of this work (see Sec-
tion 3).

1. Further Pre-training Experimental Settings
1.1. Data Augmentation Details

We utilize four common types of data augmentation to
generate augmented two different views in pre-training, in-
cluding random rotation ([-180°, 180°]) along an arbitrary
axis (applied independently for both two views), random
scaling ([0.8, 1.2]), random flipping along X-axis or Y-
axis, and random point dropout. We follow ProCo [34]
in random point dropout and sample 100k points from the
original point cloud for each of the two augmented views.
20k points are chosen from the same indexes to ensure a
20% overlap for the two augmented views, while the other
80k points are randomly sampled from the remaining point
clouds. Our data augmentation strictly follows previous
work ProCo [34] and CSC [5] for fair comparisons with
them. Concretely, we follow ProCo [34] for outdoor 3D
object detection on KITTI [3] and Waymo [30] and follow
CSC [5] for other experimental cases for data augmentation.

1.2. Hardware Settings

We next report the hardware used in our experiments.
The PCon [31], ProCo [34] and CSC [5] use data parallel
on eight NVIDIA Tesla V100 GPUs with at least 16 GB
GPU memory per card as reported in their papers. Limited
by computational resources, we use data parallel on four
NVIDIA 2080 Ti GPUs with 11 GB GPU memory per card
in all experiments. For experiments in outdoor 3D object

detection, we directly report the results of ProCo [34] in Ta-
ble 1 and Table 2 of our main paper according to its original
paper. It can be seen that GFC still outperforms the state-
of-the-art approach ProCo [34] consistently even if much
fewer computational resources are used. For all other ex-
periments, we reimplement the CSC [5], ProCo [34], PCon
[31] and use the same hardware and experimental settings
as our proposed GFC in experiments for a fair comparison
in Tables 3, 4, and 5 of our main paper. Specifically, we use
data parallel on four NVIDIA 2080 Ti GPUs with 11 GB
GPU memory per card.

2. Dataset Details

S3DIS. S3DIS is a large indoor point cloud scene under-
standing dataset across six large-scale indoor areas. The
total number of scenes is 271. Area 5 is utilized for test-
ing and other areas are used as the training set. Benefiting
from Sparse convolution of Minkowski engine [1,4], we do
not partition the 3D scene into small rooms. The S3DIS
dataset has more than 215 million points with thirteen se-
mantic classes. It is used to test the effectiveness of the
proposed GFC for both indoor semantic segmentation and
instance segmentation.
ScanNet-v2 (Sc) [2]. ScanNet-v2 is a large-scale and com-
prehensive 3D indoor scene understanding dataset consist-
ing of 1,513 3D scans. The dataset has been adopted for
tasks of semantic segmentation, instance segmentation, and
object detection. The dataset is divided into 1,201 scans
as the training set and 312 scans as the validation set. The
number of the semantic category is 21 for semantic seg-
mentation. The ScanNet-v2 [2] benchmark is used to test
the effectiveness of the proposed GFC for indoor semantic
segmentation, instance segmentation as well as indoor ob-
ject detection. Also, it is used as the pre-training dataset for
indoor scene understanding tasks and the outdoor semantic
segmentation task on SemanticKITTI.
KITTI (K) [3]. KITTI [3] is a large-scale driving-scene
dataset that covers sequential outdoor LiDAR point clouds.
The KITTI 3D point cloud object detection dataset consists
of 7481 labeled samples. The labeled 3D LiDAR scans are
split into the training set with 3,712 scans and the validation
set with 3,769 scans. The mean average precision (mAP)
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with 40 recall positions is typically utilized to evaluate the
3D object detection performance. The 3D IoU (Intersection
over Union) thresholds are set as 0.7 for cars and 0.5 for
cyclists and pedestrians. The KITTI [3] is used to test the
effectiveness of the proposed GFC for outdoor 3D object
detection.
SemanticKITTI (SK). SemanticKITTI is derived from
the above-mentioned KITTI dataset [3] and annotated with
point-level semantics. It is made up of more than 43 thou-
sand (43,552) LiDAR scans. It is annotated with nineteen
semantic classes. We follow the official split and use se-
quences 00-10 for training except sequence 08 for valida-
tion. The SemanticKITTI is used to test the effectiveness of
the proposed GFC for outdoor semantic segmentation.
Waymo [30]. Waymo [30] is a large-scale driving-scene
dataset that encompasses 158,361 LiDAR scans from 798
scenes for training and 40,077 LiDAR scans for validation.
It is approximately twenty times larger than KITTI [3]. The
whole training set (without label) is utilized for pre-training
different 3D detection backbone networks. The training set
of the Waymo [30] benchmark is used as the pre-training
dataset for outdoor 3D object detection. Its validation set is
also utilized to test the effectiveness of the proposed GFC
for downstream fine-tuning in outdoor 3D object detection.

3. Limitation and Future Direction
In this Section, we discuss the limitations of our work

and conduct some further discussions regarding future re-
search directions.

3.1. Limitation

First, our designed geometry-aware and feature-
correlated contrast (GFC) is more appropriate for under-
standing large-scale 3D scenes instead of the understand-
ing of 3D shapes. We think that masked transformer-based
approaches [6, 28] can surpass sole contrastive learning-
based approaches in unsupervised representation learning
for small-scale shape understanding in terms of perfor-
mance, mainly because processing 3D shapes is less lim-
ited by the computational cost and memory consumption
[7, 33, 35]. Second, as discussed in the related work, we
do not take advantage of additional spatiotemporal informa-
tion, which we think can be important to provide additional
information to find feature consistency in self-supervised
learning [29, 32]. However, we introduce a new simple but
effective 3D pre-training framework that shows superior-
ity compared with the state-of-the-art in knowledge transfer
and data efficiency.

3.2. Future Direction

3D scene understanding is crucial to many tasks such
as robot grasping and autonomous navigation [8–27]. In
the future, we believe two directions deserve to be further

explored to better unleash the potential of 3D unsupervised
representation learning. The first is constructing large-scale
3D datasets with motion and spatio-temporal statistics for
pre-training. The second is designing more advanced self-
supervised learning techniques leveraging both geometry-
aware and semantics-correlated features considering motion
and spatiotemporal statistical cues.
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